Deb Dipto, Chakma Sumedha
Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India.
Environ Sci Pollut Res Int. 2022 Nov;29(51):77755-77770. doi: 10.1007/s11356-022-21333-4. Epub 2022 Jun 10.
Colloidal particles can attach the contaminants like heavy metals and radionuclides and act as contaminant carriers to provide a faster movement of pollutants through the interconnecting pores of the porous medium. The electrostatic repulsive force between the negatively charged colloids and the solid surface restricts the transport of the mobile colloids to the larger pores of the porous medium and initiates the size exclusion mechanism. The temporal moment analysis is treated as an effective tool to interpret the solute breakthrough curves for analyzing the statistical behavior of the contaminants. In past literature, the temporal moments have not been incorporated with the breakthrough curves of colloids and colloid-facilitated contaminants for statistical interpretation. In this research study, the temporal variations of concentrations of mobile colloids, solute attached to the mobile colloids, and the dissolved solute are obtained numerically in a fully saturated one-dimensional column considering a continuous source for varying size exclusion and colloid attachment coefficient. Utilizing the simulated spatially varying breakthrough curves, the temporal moments are estimated to calculate the mass recovery, average residence time, and the spreading of mobile colloids and dissolved solutes. The temporal moment analysis suggests that the velocity enhancement for higher size exclusion reduces the average residence time of the mobile colloids and the solute adsorbed to the mobile colloids significantly. The mass recovery of mobile colloids and the solute attached to the mobile colloids increases at a specific depth for higher size exclusion. The estimated second central moment attributes that the solute spreading follows the nonlinear trend for low size exclusion. The peaks of the relative concentration of mobile colloids and solute attached to mobile colloids drastically decrease with an increase in attachment coefficient. The peak of the relative concentration of dissolved contaminant enhances with attachment coefficient. The high second temporal moment of the dissolved contaminant at a higher attachment coefficient indicates the slow interaction of dissolved solute and porous medium and that enables a greater spreading of solute through the interconnecting porous medium. The study suggests that the faster movement of mobile colloids and the solute attached to the mobile colloids at higher exclusion imparts a potential risk of groundwater contamination and thorough statistical interpretation is needful to analyze the behavior of colloids and colloid-facilitated contaminants. The research work does not consider the transient flow field and the effect of the presence of air phase in the partially saturated soil column in the groundwater system.
胶体颗粒可以吸附重金属和放射性核素等污染物,并作为污染物载体,使污染物通过多孔介质的连通孔隙更快地移动。带负电荷的胶体与固体表面之间的静电排斥力限制了可移动胶体向多孔介质较大孔隙的传输,并启动了尺寸排阻机制。时间矩分析被视为解释溶质突破曲线以分析污染物统计行为的有效工具。在过去的文献中,时间矩尚未与胶体和胶体促进污染物的突破曲线相结合进行统计解释。在本研究中,考虑连续源以及变化的尺寸排阻和胶体附着系数,在完全饱和的一维柱体中通过数值方法获得了可移动胶体、附着在可移动胶体上的溶质以及溶解溶质浓度的时间变化。利用模拟的空间变化突破曲线,估计时间矩以计算质量回收率、平均停留时间以及可移动胶体和溶解溶质的扩散情况。时间矩分析表明,较高的尺寸排阻导致的速度增强显著降低了可移动胶体以及吸附在可移动胶体上的溶质的平均停留时间。对于较高的尺寸排阻,可移动胶体和附着在可移动胶体上的溶质在特定深度处的质量回收率会增加。估计的二阶中心矩表明,对于低尺寸排阻,溶质扩散遵循非线性趋势。可移动胶体以及附着在可移动胶体上的溶质的相对浓度峰值随着附着系数的增加而急剧下降。溶解污染物的相对浓度峰值随着附着系数的增加而增强。在较高附着系数下,溶解污染物的二阶时间矩较高,这表明溶解溶质与多孔介质之间的相互作用缓慢,使得溶质能够通过连通的多孔介质有更大程度的扩散。该研究表明,在较高排阻情况下可移动胶体和附着在可移动胶体上的溶质的更快移动会带来地下水污染的潜在风险,需要进行全面的统计解释来分析胶体和胶体促进污染物的行为。该研究工作未考虑地下水系统中部分饱和土柱中的瞬态流场以及气相存在的影响。