Ranieri Umbertoluca, Conway Lewis J, Donnelly Mary-Ellen, Hu Huixin, Wang Mengnan, Dalladay-Simpson Philip, Peña-Alvarez Miriam, Gregoryanz Eugene, Hermann Andreas, Howie Ross T
Center for High Pressure Science and Technology Advanced Research, 1690 Cailun Road, Shanghai, 201203, China.
Dipartimento di Fisica, Università di Roma La Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy.
Phys Rev Lett. 2022 May 27;128(21):215702. doi: 10.1103/PhysRevLett.128.215702.
Through a series of x-ray diffraction, optical spectroscopy diamond anvil cell experiments, combined with density functional theory calculations, we explore the dense CH_{4}-H_{2} system. We find that pressures as low as 4.8 GPa can stabilize CH_{4}(H_{2}){2} and (CH{4}){2}H{2}, with the latter exhibiting extreme hardening of the intramolecular vibrational mode of H_{2} units within the structure. On further compression, a unique structural composition, (CH_{4}){3}(H{2}){25}, emerges. This novel structure holds a vast amount of molecular hydrogen and represents the first compound to surpass 50 wt % H{2}. These compounds, stabilized by nuclear quantum effects, persist over a broad pressure regime, exceeding 160 GPa.
通过一系列X射线衍射、光谱学金刚石对顶砧细胞实验,并结合密度泛函理论计算,我们对致密的CH₄-H₂体系进行了探索。我们发现,低至4.8吉帕的压力就能使CH₄(H₂)₂和(CH₄)₂H₂稳定,后者在结构中H₂单元的分子内振动模式表现出极端硬化。进一步压缩时,会出现一种独特的结构组成(CH₄)₃(H₂)₂₅。这种新结构包含大量分子氢,是第一种氢含量超过50 wt %的化合物。这些由核量子效应稳定的化合物在超过160吉帕的宽压力范围内都能保持稳定。