Shuttleworth Hannah A, Kuzovnikov Mikhail A, Conway Lewis J, Hu Huixin, Yan Jinwei, Gallego-Parra Samuel, Osmond Israel, Marqueño Tomas, Hanfland Michael, Laniel Dominique, Gregoryanz Eugene, Hermann Andreas, Peña-Alvarez Miriam, Howie Ross T
Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh, EH9 3FD, United Kingdom.
Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, United Kingdom.
Angew Chem Int Ed Engl. 2025 May 12;64(20):e202422710. doi: 10.1002/anie.202422710. Epub 2025 Apr 3.
Carbon, nitrogen, and hydrogen are among the most abundant elements in the solar system, and our understanding of their interactions is fundamental to prebiotic chemistry. CH and N are the simplest archetypical molecules formed by these elements and are both markedly stable under extremes of pressure. Through a series of diamond anvil cell experiments supported by density functional theory calculations, we observe diverse compound formation and reactivity in the CH-N binary system at high pressure. Above 7 GPa two concentration-dependent molecular compounds emerge, (CH)N and (CH)(N), held together by weak van der Waals interactions. Strikingly, further compression at room temperature irreversibly breaks the N triple bond, inducing the dissociation of CH above 140 GPa, with the near-quenched samples revealing distinct spectroscopic signatures of strong covalently bonded C-N-H networks. High temperatures vastly reduce the required pressure to promote the reactivity between CH and N, with NH forming together with longer-chain hydrocarbons at 14 GPa and 670 K, further decomposing into powdered diamond when temperatures exceed 1200 K. These results exemplify how pressure-driven chemistry can cause unexpected complexity in the most simple molecular precursors.
碳、氮和氢是太阳系中最丰富的元素,我们对它们相互作用的理解是生命起源前化学的基础。CH和N是由这些元素形成的最简单的典型分子,在极端压力下都非常稳定。通过一系列由密度泛函理论计算支持的金刚石对顶砧实验,我们观察到在高压下CH-N二元体系中多样的化合物形成和反应活性。在7吉帕以上出现了两种浓度依赖的分子化合物,(CH)N和(CH)(N),它们通过弱范德华相互作用结合在一起。引人注目的是,在室温下进一步压缩会不可逆地打破N三键,在140吉帕以上诱导CH解离,近淬火样品显示出强共价键合的C-N-H网络的独特光谱特征。高温大大降低了促进CH和N之间反应所需的压力,在14吉帕和670K时NH与长链烃一起形成,当温度超过1200K时进一步分解成粉末状金刚石。这些结果例证了压力驱动的化学如何能在最简单的分子前体中导致意想不到的复杂性。