Jiao Ruwang, Xue Bing, Zhang Mengjie
IEEE Trans Cybern. 2023 Aug;53(8):5165-5177. doi: 10.1109/TCYB.2022.3178132. Epub 2023 Jul 18.
Constrained multiobjective optimization problems (CMOPs) pose great difficulties to the existing multiobjective evolutionary algorithms (MOEAs), in terms of constraint handling and the tradeoffs between diversity and convergence. The constraints divide the search space into feasible and infeasible regions. A key to solving CMOPs is how to effectively utilize the information of both feasible and infeasible solutions during the optimization process. In this article, we propose a multiform optimization framework to solve a CMOP task together with an auxiliary CMOP task in a multitask setting. The proposed framework is designed to conduct a search in different sizes of feasible space that is derived from the original CMOP task. The derived feasible space is easier to search and can provide a useful inductive bias to the search process of the original CMOP task, by leveraging the transferable knowledge shared between them, thereby helping the search to toward the Pareto optimal solutions from both the infeasible and feasible regions of the search space. The proposed framework is instantiated in three kinds of MOEAs: 1) dominance-based; 2) decomposition-based; and 3) indicator-based algorithms. Experiments on four sets of benchmark test problems demonstrate the superiority of the proposed method over four representative constraint-handling techniques. In addition, the comparison against five state-of-the-art-constrained MOEAs demonstrates that the proposed approach outperforms these contender algorithms. Finally, the proposed method is successfully applied to solve a real-world antenna array synthesis problem.
约束多目标优化问题(CMOPs)在约束处理以及多样性与收敛性之间的权衡方面,给现有的多目标进化算法(MOEAs)带来了巨大困难。约束将搜索空间划分为可行域和不可行域。解决CMOPs的关键在于如何在优化过程中有效利用可行解和不可行解的信息。在本文中,我们提出了一种多形式优化框架,用于在多任务设置中解决CMOP任务以及一个辅助CMOP任务。所提出的框架旨在在从原始CMOP任务导出的不同大小的可行空间中进行搜索。通过利用它们之间共享的可转移知识,导出的可行空间更易于搜索,并且可以为原始CMOP任务的搜索过程提供有用的归纳偏差,从而帮助搜索从搜索空间的不可行域和可行域朝着帕累托最优解方向进行。所提出的框架在三种类型的MOEAs中实例化:1)基于支配的;2)基于分解的;3)基于指标的算法。在四组基准测试问题上的实验证明了所提出的方法优于四种代表性的约束处理技术。此外,与五种最新的约束MOEAs的比较表明,所提出的方法优于这些竞争算法。最后,所提出的方法成功应用于解决一个实际的天线阵列综合问题。