Suppr超能文献

对 COVID-19 国家传播分类准确性的分析。

An analysis of the accuracy of COVID-19 country transmission classification.

机构信息

Faculty of Health and Medical Sciences, University of Surrey, 30 Priestley Road, Surrey Research Park, Guildford, GU2 7YH, Surrey, UK.

World Health Organization, Regional Office for South-East Asia, World Health House, Indraprastha Estate, Mahatama Gandhi Marg, New Delhi, 110 002, India.

出版信息

Sci Rep. 2022 Jun 10;12(1):9604. doi: 10.1038/s41598-022-13494-6.

Abstract

Accurate epidemiological classification guidelines are essential to ensure implementation of adequate public health and social measures. Here, we investigate two frameworks, published in March 2020 and November 2020 by the World Health Organization (WHO) to categorise transmission risks of COVID-19 infection, and assess how well the countries' self-reported classification tracked their underlying epidemiological situation. We used three modelling approaches: an ordinal longitudinal model, a proportional odds model and a machine learning One-Rule classification algorithm. We applied these models to 202 countries' daily transmission classification and epidemiological data, and study classification accuracy over time for the period April 2020 to June 2021, when WHO stopped publishing country classifications. Overall, the first published WHO classification, purely qualitative, lacked accuracy. The incidence rate within the previous 14 days was the best predictor with an average accuracy throughout the period of study of 61.5%. However, when each week was assessed independently, the models returned predictive accuracies above 50% only in the first weeks of April 2020. In contrast, the second classification, quantitative in nature, increased significantly the accuracy of transmission labels, with values as high as 94%.

摘要

准确的流行病学分类指南对于确保实施适当的公共卫生和社会措施至关重要。在这里,我们研究了世界卫生组织(WHO)在 2020 年 3 月和 2020 年 11 月发布的两个框架,用于对 COVID-19 感染传播风险进行分类,并评估各国自我报告的分类与潜在流行病学情况的吻合程度。我们使用了三种建模方法:有序纵向模型、比例优势模型和机器学习 One-Rule 分类算法。我们将这些模型应用于 202 个国家的每日传播分类和流行病学数据,并研究了 2020 年 4 月至 2021 年 6 月期间的分类准确性,当时世卫组织停止发布国家分类。总体而言,第一个发布的 WHO 分类(纯粹定性)缺乏准确性。过去 14 天内的发病率是最佳预测指标,在整个研究期间的平均准确率为 61.5%。然而,当每周分别评估时,仅在 2020 年 4 月的前几周,模型返回的预测准确率才超过 50%。相比之下,第二个分类(定量性质)大大提高了传播标签的准确性,其值高达 94%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4deb/9187651/3f55baea1fa2/41598_2022_13494_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验