Xue Lianjie, Jin Shiqiang, Nagasaka Shinobu, Higgins Daniel A, Ito Takashi
Department of Chemistry, Kansas State University, Manhattan, KS, 66506, USA.
Department of Statistics, Kansas State University, Manhattan, KS, 66506, USA.
J Fluoresc. 2022 Sep;32(5):1779-1787. doi: 10.1007/s10895-022-02975-6. Epub 2022 Jun 11.
Fluorescence correlation spectroscopy (FCS) has been widely used to investigate molecular diffusion behavior in various samples. The use of the maximum entropy method (MEM) for FCS data analysis provides a unique means to determine multiple distinct diffusion coefficients without a priori assumption of their number. Comparison of the MEM-based FCS method (MEM-FCS) with another method will reveal its utility and advantage as an analytical tool to investigate diffusion dynamics. Herein, we measured diffusion of fluorescent probes doped into nanostructured thin films using MEM-FCS, and validated the results with single molecule tracking (SMT) data. The efficacy of the MEM code employed was first demonstrated by analyzing simulated FCS data for systems incorporating one and two diffusion modes with broadly distributed diffusion coefficients. The MEM analysis accurately afforded the number of distinct diffusion modes and their mean diffusion coefficients. These results contrasted with those obtained by fitting the simulated data to conventional two-component and anomalous diffusion models, which yielded inaccurate estimates of the diffusion coefficients. Subsequently, the MEM analysis was applied to FCS data acquired from hydrophilic dye molecules incorporated into microphase-separated polystyrene-block-poly(ethylene oxide) (PS-b-PEO) thin films characterized under a water-saturated N atmosphere. The MEM analysis revealed distinct fast and slow diffusion components attributable to molecules diffusing on the film surface and inside the film, respectively. SMT studies of the same materials yielded trajectories for mobile molecules that appear to follow the curved PEO microdomains. Diffusion coefficients obtained from the SMT data were consistent with those obtained for the slow diffusion component detected by MEM-FCS. These results highlight the utility of MEM-FCS and SMT for gaining complementary information on molecular diffusion processes in heterogeneous material systems.
荧光相关光谱法(FCS)已被广泛用于研究各种样品中的分子扩散行为。使用最大熵方法(MEM)进行FCS数据分析提供了一种独特的手段,可在无需事先假设扩散系数数量的情况下确定多个不同的扩散系数。将基于MEM的FCS方法(MEM-FCS)与另一种方法进行比较,将揭示其作为研究扩散动力学的分析工具的效用和优势。在此,我们使用MEM-FCS测量了掺杂到纳米结构薄膜中的荧光探针的扩散,并通过单分子追踪(SMT)数据验证了结果。首先通过分析包含具有广泛分布扩散系数的一种和两种扩散模式的系统的模拟FCS数据,证明了所采用的MEM代码的有效性。MEM分析准确地给出了不同扩散模式的数量及其平均扩散系数。这些结果与通过将模拟数据拟合到传统的双组分和反常扩散模型所获得的结果形成对比,后者对扩散系数的估计不准确。随后,将MEM分析应用于从掺入微相分离的聚苯乙烯-嵌段-聚(环氧乙烷)(PS-b-PEO)薄膜中的亲水性染料分子获得的FCS数据,该薄膜在水饱和的N气氛下进行了表征。MEM分析揭示了分别归因于在薄膜表面和薄膜内部扩散的分子的明显快速和慢速扩散成分。对相同材料的SMT研究产生了移动分子的轨迹,这些轨迹似乎遵循弯曲的PEO微区。从SMT数据获得的扩散系数与通过MEM-FCS检测到的慢速扩散成分获得的扩散系数一致。这些结果突出了MEM-FCS和SMT在获取关于异质材料系统中分子扩散过程的互补信息方面的效用。