Suppr超能文献

使用一维卷积神经网络和双卷积结构模型对橄榄油进行激光诱导荧光 (LIF) 光谱分类。

Olive oil classification with Laser-induced fluorescence (LIF) spectra using 1-dimensional convolutional neural network and dual convolution structure model.

机构信息

School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China.

School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2022 Oct 15;279:121418. doi: 10.1016/j.saa.2022.121418. Epub 2022 May 21.

Abstract

Laser-induced fluorescence (LIF) spectroscopy is widely used for the analysis and classification of olive oil. This paper proposes the classification of LIF data using a specific 1-dimensional convolutional neural network (1D-CNN) model, which does not require pre-processing steps such as normalisation or denoising and can be flexibly applied to massive data. However, by adding a dual convolution structure (Dual-conv) to the model, the features of the 1-dimensional spectra are more scattered within one convolution-pooling process; thus, the classification effects are improved. The models were validated through an olive oil classification experiment which contained a total of 72,000 sets of LIF spectra data, and the classification accuracy rate reached ∼99.69%. Additionally, a common classification approach, the support vector machine (SVM), was utilised for the comparison of the results. The results show that the neural networks perform better than the SVM. The Dual-conv model structure has a faster convergence speed and higher evaluation parameters than those of the 1D-CNN in the same period of iterations, without increasing the data dimension.

摘要

激光诱导荧光(LIF)光谱广泛用于橄榄油的分析和分类。本文提出了一种使用特定的一维卷积神经网络(1D-CNN)模型对 LIF 数据进行分类的方法,该模型不需要归一化或去噪等预处理步骤,并且可以灵活应用于海量数据。然而,通过在模型中添加双卷积结构(Dual-conv),可以在一个卷积-池化过程中使一维光谱的特征更加分散,从而提高分类效果。通过一个包含 72000 组 LIF 光谱数据的橄榄油分类实验对模型进行验证,分类准确率达到约 99.69%。此外,还使用支持向量机(SVM)进行了常见的分类方法比较。结果表明,神经网络的性能优于 SVM。在相同的迭代周期内,与 1D-CNN 相比,Dual-conv 模型结构的收敛速度更快,评估参数更高,而不会增加数据维度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验