CSIRO Land and Water, 147 Underwood Avenue, Floreat, Western Australia 6014, Australia.
National Measurement Institute, 105 Delhi Road, North Ryde, NSW, Australia.
Sci Total Environ. 2022 Sep 10;838(Pt 4):156562. doi: 10.1016/j.scitotenv.2022.156562. Epub 2022 Jun 9.
Relating laboratory leaching methods to partitioning and transport of per- and poly-fluoroalkyl substances (PFAS) in field soils is challenging, making estimation of fluxes to groundwater and surface water uncertain. Existing laboratory leaching methods have limitations when assessing field leaching. For 37 aged field soils from five sites historically contaminated with PFAS over decades, we assess PFAS leaching using new and existing laboratory leaching methods to provide alternative methods better reflecting PFAS risks posed by its leaching and movement. Dominant PFAS in the soils were perfluorooctane sulfonic acid, perfluorohexane sulfonic acid, and perfluorohexanoic acid and to a lesser extent perfluorooctanoic acid. Leaching from intact soil cores (Exp 1) was taken to reflect field conditions. These were compared to two new laboratory batch tests, saturate-spin (Exp 2) and saturate-tumble-spin (Exp 3), and two standard approaches; Australian Standard Leaching Procedure (ASLP, Exp 4) and the Leaching Environmental Assessment Framework (LEAF, Exp 5). The tests varied in terms of liquid:soil ratio, tumbling time and pH of the starting solution, with LEAF-1313 conducted across seven pHs (2-12). Correlations between leachate and soil concentrations were highest for Exp 4 and Exp 5 (R = 0.72-0.98) and lowest for Exp 3 (R = 0.53). The PFAS mass leached as a fraction of the total increased such that: soil core leaching (27 %) < saturate-spin (30 %) < saturate-tumble-spin (65 %) ≤ LEAF-1313 (65 to 88 % at pH 5-9) < ASLP (90 %). As a fraction of individual PFAS compounds in leachate compared with soil, the shorter chain PFAS (e.g., perfluorobutanoic acid) were higher in the leachate in all tests. Across all tests, the saturate-spin batch test most closely represented intact soil core leaching and therefore potentially provides a measure more analogous of in situ soil leaching at field sites. Other methods would apply to broader applications such as landfill disposal.
将实验室浸出方法与田间土壤中全氟和多氟烷基物质(PFAS)的分配和迁移相关联具有挑战性,这使得对地下水和地表水通量的估计变得不确定。现有的实验室浸出方法在评估田间浸出时存在局限性。对于五个历史上数十年受 PFAS 污染的场地的 37 个老化田间土壤,我们使用新的和现有的实验室浸出方法评估 PFAS 的浸出,以提供更好地反映其浸出和迁移造成的 PFAS 风险的替代方法。土壤中主要的 PFAS 是全氟辛烷磺酸、全氟己烷磺酸和全氟己酸,其次是全氟辛酸。从完整的土壤芯(实验 1)中浸出以反映现场条件。将这些与两种新的实验室批处理测试(饱和旋转(实验 2)和饱和滚动旋转(实验 3))以及两种标准方法进行比较;澳大利亚标准浸出程序(ASLP,实验 4)和浸出环境评估框架(LEAF,实验 5)。这些测试在液体与土壤的比例、翻滚时间和起始溶液的 pH 值方面有所不同,LEAF-1313 在七个 pH 值(2-12)下进行。浸出液与土壤浓度之间的相关性最高的是实验 4 和实验 5(R = 0.72-0.98),最低的是实验 3(R = 0.53)。作为总浸出量的一部分,PFAS 的浸出量增加,如下所示:土壤芯浸出(27%)<饱和旋转(30%)<饱和滚动旋转(65%)≤LEAF-1313(pH 5-9 时为 65%至 88%)<ASLP(90%)。与土壤相比,在浸出液中作为个别 PFAS 化合物的一部分,较短链 PFAS(例如全氟丁酸)在所有测试中均较高。在所有测试中,饱和旋转批处理测试最能代表完整土壤芯浸出,因此可能提供更类似于现场土壤浸出的原位土壤浸出测量。其他方法将适用于更广泛的应用,例如垃圾填埋处置。