College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China.
Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China.
J Sci Food Agric. 2022 Dec;102(15):7062-7071. doi: 10.1002/jsfa.12067. Epub 2022 Jul 2.
Flavan-3-ol polyphenols have been shown to have great advantages in inhibiting acrylamide formation. However, flavan-3-ol polyphenols have structures that vary significantly, and existing research has been focused mainly on the effects of B-type procyanidins and structural units of procyanidins. This study aims to separate structurally different A-type procyanidins from peanut skin and compare their inhibitory effects on acrylamide in an asparagine-glucose simulation system.
Five compounds were separated and identified from peanut skin, including epicatechin-(2β → O → 7, 4β → 8)-ent-epicatechin, epicatechin-(2β → O → 7, 4β → 8)-epicatechin, epicatechin-(2β → O → 7, 4β → 8)-epicatechin-(4β → 6)-catechin, epicatechin-(2β → O → 7, 4β → 8)-epicatechin-(4β → 8)-catechin, and epicatechin-(4β → 6)-epicatechin-(4β → 8, 2β → O → 7)-catechin. All the procyanidins could reduce the acrylamide content within a certain range of concentrations. The highest inhibition rates followed the order of compound 5 (A-type trimer) > compound 1 (A-type dimer) > compound 2 (A-type dimer) > compound 3 (A-type trimer) > compound 4 (A-type trimer). Comparison analysis showed that structurally different A-type procyanidins have various inhibitory effects on acrylamide production, which may be related to their spatial configuration and bond connection mode.
Overall, our findings help us to gain a better understanding of the relationship between the structure of procyanidins and their inhibitory effects on acrylamide, particularly the inhibitory effect of A-type. There are potential practical implications if people use A-type procyanidins as acrylamide inhibitors in hot processed foods in the future. © 2022 Society of Chemical Industry.
黄烷-3-醇多酚在抑制丙烯酰胺形成方面具有很大的优势。然而,黄烷-3-醇多酚的结构差异很大,现有的研究主要集中在 B 型原花青素和原花青素结构单元上。本研究旨在从花生皮中分离结构不同的 A 型原花青素,并比较它们在天冬酰胺-葡萄糖模拟体系中对丙烯酰胺的抑制作用。
从花生皮中分离并鉴定出 5 种化合物,包括表儿茶素-(2β→O→7,4β→8)-ent-表儿茶素、表儿茶素-(2β→O→7,4β→8)-表儿茶素、表儿茶素-(2β→O→7,4β→8)-表儿茶素-(4β→6)-儿茶素、表儿茶素-(2β→O→7,4β→8)-表儿茶素-(4β→8)-儿茶素和表儿茶素-(4β→6)-表儿茶素-(4β→8,2β→O→7)-儿茶素。所有原花青素都能在一定浓度范围内降低丙烯酰胺含量。最高抑制率的顺序为化合物 5(A 型三聚体)>化合物 1(A 型二聚体)>化合物 2(A 型二聚体)>化合物 3(A 型三聚体)>化合物 4(A 型三聚体)。对比分析表明,结构不同的 A 型原花青素对丙烯酰胺生成的抑制作用各不相同,这可能与其空间构型和键连接方式有关。
总的来说,我们的研究结果有助于更好地了解原花青素结构与抑制丙烯酰胺之间的关系,特别是 A 型的抑制作用。如果未来人们在热加工食品中使用 A 型原花青素作为丙烯酰胺抑制剂,将具有潜在的实际意义。 © 2022 化学学会。