Suppr超能文献

基于吡啶和嘧啶的CYP11B1和CYP11B2抑制剂的计算机模拟选择性建模:一个案例研究。

In silico selectivity modeling of pyridine and pyrimidine based CYP11B1 and CYP11B2 inhibitors: A case study.

作者信息

Matore Balaji Wamanrao, Banjare Purusottam, Singh Jagadish, Roy Partha Pratim

机构信息

Department of Pharmacy, Guru GhasidasVishwavidyalaya (A Central University), Bilaspur, 495009, India.

Department of Pharmacy, Guru GhasidasVishwavidyalaya (A Central University), Bilaspur, 495009, India.

出版信息

J Mol Graph Model. 2022 Nov;116:108238. doi: 10.1016/j.jmgm.2022.108238. Epub 2022 Jun 1.

Abstract

of selective drug candidates for highly structural similar targets is a challenging task for researchers. The main objective of this study was to explore the selectivity modeling of pyridine and pyrimidine scaffold towards the highly homologous targets CYP11B1 and CYP11B2 enzymes by in silico (Molecular docking and QSAR) approaches. In this regard, a big dataset (n = 228) of CYP11B1 and CYP11B2 inhibitors were gathered and classified based on heterocyclic ring and the exhaustive analysis was carried out for pyridine and pyrimidinescaffolds. The LibDock algorithm was used to explore the binding pattern, screening, and identify the structural feature responsible for the selectivity of the ligands towards the studied targets. Finally, QSAR analysis was done to explore the correlation between various binding parameters and structural features responsible for the inhibitory activity and selectivity of the ligands in a quantitative way. The docking and QSAR analysis clearly revealed and distinguished the importance of structural features, functional groups attached for CYP11B2 and CYP11B1 selectivity for pyridine and pyrimidine analogs. Additionally, the docking analysis highlighted the differentiating amino acids residues for selectivity for ligands for each of the enzymes. The results obtained from this research work will be helpful in designing the selective CYP11B1/CYP11B2 inhibitors.

摘要

对于高度结构相似的靶点而言,筛选选择性药物候选物对研究人员来说是一项具有挑战性的任务。本研究的主要目的是通过计算机模拟(分子对接和定量构效关系)方法,探索吡啶和嘧啶支架对高度同源的靶点CYP11B1和CYP11B2酶的选择性建模。在这方面,收集了一个包含228种CYP11B1和CYP11B2抑制剂的大数据集,并根据杂环进行分类,同时对吡啶和嘧啶支架进行了详尽分析。使用LibDock算法来探索结合模式、进行筛选,并识别负责配体对所研究靶点选择性的结构特征。最后,进行定量构效关系分析,以定量方式探索各种结合参数与负责配体抑制活性和选择性的结构特征之间的相关性。对接和定量构效关系分析清楚地揭示并区分了结构特征、连接的官能团对吡啶和嘧啶类似物对CYP11B2和CYP11B1选择性的重要性。此外,对接分析突出了每种酶对配体选择性的差异氨基酸残基。从这项研究工作中获得的结果将有助于设计选择性CYP11B1/CYP11B2抑制剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验