Mater Research, Mater Health Services and University of Queensland, Stanley Street, South Brisbane, Brisbane, QLD, 4101, Australia.
Intensive Care Department, Mater Health Services, Stanley Street, South Brisbane, Brisbane, QLD, 4101, Australia.
J Clin Monit Comput. 2023 Feb;37(1):201-210. doi: 10.1007/s10877-022-00879-1. Epub 2022 Jun 13.
Using computer simulation we investigated whether machine learning (ML) analysis of selected ICU monitoring data can quantify pulmonary gas exchange in multi-compartment format. A 21 compartment ventilation/perfusion (V/Q) model of pulmonary blood flow processed 34,551 combinations of cardiac output, hemoglobin concentration, standard P50, base excess, VO and VCO plus three model-defining parameters: shunt, log SD and mean V/Q. From these inputs the model produced paired arterial blood gases, first with the inspired O fraction (FiO) adjusted to arterial saturation (SaO) = 0.90, and second with FiO increased by 0.1. 'Stacked regressor' ML ensembles were trained/validated on 90% of this dataset. The remainder with shunt, log SD, and mean 'held back' formed the test-set. 'Two-Point' ML estimates of shunt, log SD and mean utilized data from both FiO settings. 'Single-Point' estimates used only data from SaO = 0.90. From 3454 test gas exchange scenarios, two-point shunt, log SD and mean estimates produced linear regression models versus true values with slopes ~ 1.00, intercepts ~ 0.00 and R ~ 1.00. Kernel density and Bland-Altman plots confirmed close agreement. Single-point estimates were less accurate: R = 0.77-0.89, slope = 0.991-0.993, intercept = 0.009-0.334. ML applications using blood gas, indirect calorimetry, and cardiac output data can quantify pulmonary gas exchange in terms describing a 20 compartment V/Q model of pulmonary blood flow. High fidelity reports require data from two FiO settings.
利用计算机模拟,我们研究了机器学习(ML)分析选定的 ICU 监测数据是否可以对多腔格式的肺气体交换进行量化。一个 21 腔通气/灌注(V/Q)模型对肺血流进行了处理,该模型处理了 34551 种组合的心输出量、血红蛋白浓度、标准 P50、基础过剩、VO 和 VCO 以及三个模型定义参数:分流、对数 SD 和平均 V/Q。从这些输入中,模型生成了配对的动脉血气,首先将吸入 O 分数(FiO)调整为动脉饱和度(SaO)=0.90,其次将 FiO 增加 0.1。“堆叠回归器”ML 集成在该数据集的 90%上进行训练/验证。其余带有分流、对数 SD 和平均“保留”的部分形成了测试集。“两点”ML 估计分流、对数 SD 和平均使用了来自两个 FiO 设置的数据。“单点”估计仅使用 SaO=0.90 时的数据。在 3454 个测试气体交换场景中,两点分流、对数 SD 和平均估计值与真实值的线性回归模型的斜率1.00,截距0.00,R~1.00。核密度和 Bland-Altman 图证实了紧密一致。单点估计不太准确:R=0.77-0.89,斜率=0.991-0.993,截距=0.009-0.334。使用血气、间接热量法和心输出量数据的 ML 应用可以根据描述肺血流的 20 腔 V/Q 模型来量化肺气体交换。高保真报告需要来自两个 FiO 设置的数据。