Broquard Coralie, Lancelot Théo, Lefebvre Sébastien, Courcot Lucie, Gaudron Sylvie M
UMR 8187 Laboratoire d'Océanologie et de Géosciences (LOG), Université de Lille, ULCO, CNRS, IRD, F-59000 Lille, France.
Conserv Physiol. 2022 Jun 9;10(1):coac033. doi: 10.1093/conphys/coac033. eCollection 2022.
, a marine benthic polychaete, is widespread on sandy beaches in Europe and considered as an ecosystem engineer despite commonly used as bait by fishermen. Data regarding the bioenergetics of the lugworm larval stages are still incomplete. Trochophore is initially lecithotroph and then becomes planktotroph while growing as metatrochophore on subtidal area, a quite stable daily temperature environment compared with the foreshore, where juveniles and adult live, with daily temperature fluctuating up to 15°C. These discrepancies in temperature ranges may influence the temperature corrections (TCs) that control metabolic rates during the life cycle of . We carried out laboratory experiments in microcosms by inducing artificial spawning of lugworms, and then undertaken fertilization to obtain embryos and, finally, to follow, the larval development up to 10 segments with chaetae for 50 days under three temperature conditions (13°C, 15°C and 17°C) and two food conditions ('fed' and 'non-fed'). The first feeding ('birth') of larvae was deciphered anatomically for a size between 450 and 500 μm and described at 17 days post-fertilization for larvae reared at 15°C and 17°C. Using a biphasic model with a von Bertalanffy growth before 'birth' and an exponential growth after 'birth', among the three temperature treatments, the 15°C condition exhibited the best larval performance. TC based on embryonic and larval metabolic rates gave an Arrhenius temperature of ~6661 K and a higher boundary temperature tolerance range of ~294.5 K. Both temperature values differ from those calculated from TC based mostly on juvenile and adult metabolic rates. We claim to use two sets of Arrhenius temperatures according to the life history stages of while using Dynamic Energy Budget model. This model was developed initially in order to manage the conservation of the lugworm species.
沙蠋是一种海洋底栖多毛纲动物,在欧洲的沙滩上广泛分布,尽管渔民常用它作鱼饵,但它仍被视为生态系统工程师。关于沙蠋幼体阶段生物能量学的数据仍然不完整。担轮幼虫最初是卵黄营养型,然后在潮下带作为中担轮幼虫生长时变为浮游生物营养型,与潮间带(幼体和成体生活的地方,日温度波动可达15°C)相比,潮下带的日温度环境相当稳定。这些温度范围的差异可能会影响控制沙蠋生命周期中代谢率的温度校正(TCs)。我们在微观世界中进行了实验室实验,诱导沙蠋人工产卵,然后进行受精以获得胚胎,最后在三种温度条件(13°C、15°C和17°C)和两种食物条件(“喂食”和“不喂食”)下跟踪幼虫发育至10节带刚毛,持续50天。在解剖学上确定了沙蠋幼虫在450至500微米大小之间的首次摄食(“出生”)情况,并描述了在15°C和17°C下饲养的幼虫在受精后17天的情况。使用一个双相模型,在“出生”前采用冯·贝塔朗菲生长模型,“出生”后采用指数生长模型,在三种温度处理中,15°C条件下幼虫表现最佳。基于胚胎和幼虫代谢率的温度校正得出的阿累尼乌斯温度约为6661K,较高的边界温度耐受范围约为294.5K。这两个温度值与主要基于幼体和成体代谢率计算的温度校正值不同。我们主张在使用动态能量平衡模型时,根据沙蠋的生活史阶段使用两组阿累尼乌斯温度。该模型最初是为了管理沙蠋物种的保护而开发的。