Garcia-Mansilla Ignacio, Jones Kristofer J, Kremen Thomas J
Knee Division, Hospital Italiano de Buenos Aires, Argentina.
Division of Sports Medicine and Shoulder Surgery, Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California.
JBJS Essent Surg Tech. 2021 Oct 12;11(4). doi: 10.2106/JBJS.ST.20.00055. eCollection 2021 Oct-Dec.
Although most patients who undergo anterior cruciate ligament (ACL) reconstruction achieve long-term functional stability and symptom relief, graft rupture rates range from 2% to 10%. A small subset of these patients require a 2-stage revision ACL reconstruction because of tunnel osteolysis or tunnel malposition that will interfere with the planned revision tunnel placement. In the present article, we describe the hybrid use of arthroscopically delivered injectable allograft matrix in the femur and pre-shaped bone dowels in the tibia for the treatment of lower-extremity bone deficiencies.
After induction of anesthesia, approximately 60 cc of bone marrow aspirate is harvested from the anterior iliac crest with use of sterile techniques and is processed to obtain bone marrow aspirate concentrate. Routine diagnostic knee arthroscopy is performed via the standard anterolateral and anteromedial portals. Any additional intra-articular pathology is addressed, followed by excision of the remnant graft material, removal of existing femoral hardware as needed, and exposure of the existing bone tunnels. The femoral tunnel is debrided arthroscopically, removing all soft-tissue remnants. The existing tibial tunnel is exposed via the previous anteromedial tibial incision when possible. Again, any existing tibial hardware is removed. The tibial tunnel is then prepared with use of a combination of sequential reaming and dilation. A shaver and curets are utilized to debride the sclerotic walls of the tunnel and remove the remnant graft material. A cannulated allograft bone dowel is then impacted into place over a guidewire, ensuring that the graft is not proud within the joint space. An injectable bone allograft matrix composite is prepared by manually mixing 5 mL of StimuBlast demineralized bone matrix (Arthrex) and 5 mL of FlexiGraft cortical fibers (Arthrex), along with the previously obtained bone marrow aspirate concentrate. Under dry arthroscopy, this bone graft is delivered into the femoral tunnel via a cannula with use of the anteromedial portal. Finally, a Freer elevator is used to contour the graft at the aperture of the tunnel. Graft osteointegration is mandatory prior to proceeding with the second stage of the procedure. Typically, a minimum 3-month follow-up is necessary to confirm adequate graft incorporation on computed tomography.
As an alternative to the 2-stage procedure, previous studies have suggested the use of a single-stage revision utilizing cylindrical allografts or multiple "stacked screws." In addition, a number of bone allograft and autograft options have been described. Autologous bone graft can be harvested from the ipsilateral iliac crest or proximal aspect of the tibia with use of a variety of techniques. Allograft bone options include cancellous bone chips and commercially available bone matrices or dowels. Finally, another viable option is calcium phosphate bone graft substitutes. There is a paucity of high-quality studies comparing available bone graft materials for revision ACL reconstruction; thus, no consensus exists regarding the optimal choice.
A 2-stage approach is typically indicated for cases that demonstrate tunnel enlargement (>12 mm) that would compromise graft fixation or non-anatomic tunnel placement that will interfere with placement of the revision tibial tunnel. The aim of the first stage is to re-establish adequate bone stock to optimize future tunnel placement and healing of the ACL graft during the second stage. We believe that this 2-stage approach is a reliable and safe method of treating enlarged, irregularly shaped bone tunnel defects while minimizing the risk of complications. Furthermore, the use of allograft material avoids the donor-site morbidity and volume limitations associated with the use of autograft bone. In the case of the femoral tunnel, the injectable bone graft composite has the advantage of being easily delivered arthroscopically while completely filling irregularly shaped tunnels. The use of bone marrow aspirate concentrate may improve the rate of graft healing as well as a hydrating substance to reduce viscosity and facilitate the flow of the bone graft material through the cannula. For the tibia, especially in cases of lengthy tibial bone deficiencies, allograft bone dowels are commercially available off-the-shelf in a variety of different lengths and diameters to allow for adequate fill of bone defects.
It is well known that outcomes following revision ACL reconstruction are inferior to those following primary ACL reconstruction, with a number of variables, beyond those associated with the surgical technique, influencing clinical outcomes. Few studies have reported on the results of 2-stage revision ACL reconstruction with use of allograft bone; however, a high rate of allograft bone integration and improved bone quality at the time of revision ACL reconstruction have been reported. Moreover, Mitchell et al. reported no differences in either subjective outcomes or failure rates between the 1-stage and 2-stage revision ACL reconstruction groups.
Utilize computed tomography for preoperative assessment and measurement of the extent of osteolysis.If possible, obtain the operative report for the index ACL procedure in order to identify any preexisting hardware and to obtain any instrumentation that may be needed to facilitate hardware removal.Multiple bone dowel sizes are available off the shelf.A 70° arthroscope can aid in visualization of the entire tibial and femoral tunnel.Although the bone graft matrix can be injected while the joint is filled with irrigation fluid, we find it easier to administer the graft under dry arthroscopic conditions.Place the scope inside the tibial tunnel to confirm appropriate removal of soft tissue and hardware. Circumferential native cancellous bone should be visualized.It is acceptable to retain previous hardware if it does not interfere with the new tunnel placement.Utilize prior incisions to access the tibial tunnel.Do not underestimate the amount of bone graft needed for each tunnel.Avoid excessive force during impaction of the dowels.
ACLR = Anterior cruciate ligament reconstructionBMAC = Bone marrow aspirate concentrateMRI = Magnetic resonance imagingCT = Computed tomographyBTB = Bone-patellar tendon-boneDVT = Deep vein thrombosisROM = Range of motion.
尽管大多数接受前交叉韧带(ACL)重建的患者能获得长期功能稳定性并缓解症状,但移植物破裂率在2%至10%之间。这些患者中的一小部分由于隧道骨质溶解或隧道位置不当会干扰计划中的翻修隧道放置,需要进行两阶段翻修ACL重建。在本文中,我们描述了在股骨中关节镜下递送可注射同种异体移植物基质和在胫骨中使用预成型骨栓治疗下肢骨缺损的联合应用。
麻醉诱导后,采用无菌技术从髂前嵴采集约60 cc骨髓抽吸物,并进行处理以获得骨髓抽吸物浓缩液。通过标准的前外侧和前内侧入路进行常规诊断性膝关节镜检查。处理任何其他关节内病变,随后切除残余移植物材料,根据需要移除现有的股骨硬件,并暴露现有的骨隧道。在关节镜下清理股骨隧道,清除所有软组织残余物。如有可能,通过先前的胫骨前内侧切口暴露现有的胫骨隧道。同样,移除任何现有的胫骨硬件。然后使用顺序扩孔和扩张相结合的方法准备胫骨隧道。使用刨削器和刮匙清理隧道的硬化壁并清除残余移植物材料。然后将空心同种异体骨栓沿导丝打入到位,确保移植物在关节腔内不突出。通过手动混合5 mL的StimuBlast脱矿骨基质(Arthrex)、5 mL的FlexiGraft皮质纤维(Arthrex)以及先前获得的骨髓抽吸物浓缩液来制备可注射骨同种异体移植物基质复合物。在干燥关节镜下,通过套管经前内侧入路将这种骨移植物送入股骨隧道。最后,使用Freer剥离子在隧道开口处修整移植物。在进行手术的第二阶段之前,移植物骨整合是必需的。通常,需要至少3个月的随访以通过计算机断层扫描确认移植物充分融合。
作为两阶段手术的替代方法,先前的研究建议使用单阶段翻修,采用圆柱形同种异体移植物或多个“堆叠螺钉”。此外,已经描述了多种骨同种异体移植物和自体移植物选择。自体骨移植物可通过多种技术从同侧髂嵴或胫骨近端获取。同种异体骨选择包括松质骨碎片和市售骨基质或骨栓。最后,另一个可行的选择是磷酸钙骨移植替代物。比较用于翻修ACL重建的现有骨移植材料的高质量研究很少;因此,关于最佳选择尚无共识。
两阶段方法通常适用于显示隧道扩大(>12 mm)会损害移植物固定或非解剖学隧道位置会干扰翻修胫骨隧道放置的情况。第一阶段的目的是重新建立足够的骨量,以优化未来隧道放置并在第二阶段促进ACL移植物愈合。我们认为这种两阶段方法是治疗扩大的、形状不规则的骨隧道缺损的可靠且安全的方法,同时将并发症风险降至最低。此外,使用同种异体移植物材料可避免与使用自体骨相关的供区并发症和体积限制。对于股骨隧道,可注射骨移植复合物具有易于通过关节镜递送同时完全填充不规则形状隧道的优点。使用骨髓抽吸物浓缩液可能会提高移植物愈合率,并且作为一种保湿物质可降低粘度并促进骨移植材料通过套管流动。对于胫骨,特别是在胫骨骨缺损较长的情况下,同种异体骨栓有多种不同长度和直径的现货供应,以允许充分填充骨缺损。
众所周知,翻修ACL重建后的结果不如初次ACL重建,有许多变量(除了与手术技术相关的变量)会影响临床结果。很少有研究报道使用同种异体骨进行两阶段翻修ACL重建的结果;然而,已有报道称在翻修ACL重建时同种异体骨整合率高且骨质量改善。此外,米切尔等人报告称,单阶段和两阶段翻修ACL重建组在主观结果或失败率方面没有差异。
使用计算机断层扫描进行术前评估和测量骨质溶解的程度。如果可能,获取初次ACL手术的手术报告,以识别任何先前存在的硬件并获取可能有助于移除硬件的任何器械。有多种骨栓尺寸现货供应。70°关节镜有助于观察整个胫骨和股骨隧道。尽管骨移植基质可在关节充满冲洗液时注射,但我们发现在干燥关节镜条件下施用移植物更容易。将关节镜放入胫骨隧道内以确认软组织和硬件已适当移除。应可见环形天然松质骨。如果先前的硬件不干扰新隧道放置,则保留它是可以接受的。利用先前的切口进入胫骨隧道。不要低估每个隧道所需的骨移植量。在打入骨栓时避免过度用力。
ACLR = 前交叉韧带重建;BMAC = 骨髓抽吸物浓缩液;MRI = 磁共振成像;CT = 计算机断层扫描;BTB = 骨 - 髌腱 - 骨;DVT = 深静脉血栓形成;ROM = 活动范围