Li Thomas Nanfeng, Papanicolaou Andrew
Department of Mathematics, New York University, 251 Mercer Street, New York, 10012 NY USA.
Department of Mathematics, North Carolina State University, 2311 Stinson Drive, Raleigh, 27695 NC USA.
Appl Math Optim. 2022;86(1):12. doi: 10.1007/s00245-022-09838-3. Epub 2022 Jun 7.
In this article, we analyse optimal statistical arbitrage strategies from stochastic control and optimisation problems for multiple co-integrated stocks with eigenportfolios being factors. Optimal portfolio weights are found by solving a Hamilton-Jacobi-Bellman (HJB) partial differential equation, which we solve for both an unconstrained portfolio and a portfolio constrained to be market neutral. Our analyses demonstrate sufficient conditions on the model parameters to ensure long-term stability of the HJB solutions and stable growth rates for the optimal portfolios. To gauge how these optimal portfolios behave in practice, we perform backtests on historical stock prices of the S&P 500 constituents from year 2000 through year 2021. These backtests suggest three key conclusions: that the proposed co-integrated model with eigenportfolios being factors can generate a large number of co-integrated stocks over a long time horizon, that the optimal portfolios are sensitive to parameter estimation, and that the statistical arbitrage strategies are more profitable in periods when overall market volatilities are high.
The online version contains supplementary material available at 10.1007/s00245-022-09838-3.
在本文中,我们从随机控制和优化问题的角度分析了针对多个具有特征投资组合作为因子的协整股票的最优统计套利策略。通过求解汉密尔顿 - 雅可比 - 贝尔曼(HJB)偏微分方程来找到最优投资组合权重,我们分别针对无约束投资组合和被约束为市场中性的投资组合求解该方程。我们的分析展示了模型参数的充分条件,以确保HJB解的长期稳定性以及最优投资组合的稳定增长率。为了衡量这些最优投资组合在实际中的表现,我们对2000年至2021年标准普尔500指数成分股的历史股价进行了回测。这些回测得出三个关键结论:即所提出的以特征投资组合为因子的协整模型在较长时间范围内可以产生大量协整股票,最优投资组合对参数估计敏感,并且统计套利策略在整体市场波动率较高的时期更有利可图。
在线版本包含可在10.1007/s00245-022-09838-3获取的补充材料。