Suppr超能文献

使用超灵敏毛细管电泳离子淌度质谱法对脑血管紧张素肽进行微分析。

Microanalysis of Brain Angiotensin Peptides Using Ultrasensitive Capillary Electrophoresis Trapped Ion Mobility Mass Spectrometry.

机构信息

Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, Maryland 20742, United States.

Department of Pharmacology & Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, D.C. 20037, United States.

出版信息

Anal Chem. 2022 Jun 28;94(25):9018-9025. doi: 10.1021/acs.analchem.2c01062. Epub 2022 Jun 13.

Abstract

While the role of the renin-angiotensin system (RAS) in peripheral circulation is well characterized, we still lack an in-depth understanding of its role within the brain. This knowledge gap is sustained by lacking technologies for trace-level angiotensin detection throughout tissues, such as the brain. To provide a bridging solution, we enhanced capillary electrophoresis (CE) nanoflow electrospray ionization (ESI) with large-volume sample stacking and employed trapped ion mobility time-of-flight (timsTOF) tandem HRMS detection. A dynamic pH junction helped stack approximately 10 times more of the sample than optimal using the field-amplified reference. In conjunction, the efficiency of ion generation was maximized by a cone-jet nanospray on a low sheath-flow tapered-tip nano-electrospray emitter. The platform provided additional peptide-dependent information, the collision cross section, to filter chemical noise and improve sequence identification and detection limits. The lower limit of detection reached sub-picomolar or ∼30 zmol (∼18,000 copies) level. All nine targeted angiotensin peptides in mouse tissue samples were detectable and quantifiable from the paraventricular nucleus (PVN) of the hypothalamus even after removal of circulatory blood components (perfusion). We anticipate CE-ESI with timsTOF HRMS to be broadly applicable for the ultrasensitive detection of brain peptidomes in pursuit of a better understanding of the brain.

摘要

虽然肾素-血管紧张素系统 (RAS) 在周围循环中的作用已得到很好的描述,但我们对其在大脑中的作用仍缺乏深入的了解。这种知识差距的存在是由于缺乏在整个组织(如大脑)中痕量检测血管紧张素的技术。为了提供一个衔接解决方案,我们使用大体积样品堆积增强了毛细管电泳 (CE) 纳流电喷雾电离 (ESI),并采用了被困离子淌度飞行时间 (timsTOF) 串联高分辨质谱检测。动态 pH 结有助于使用场放大参考比最佳情况多堆积约 10 倍的样品。同时,通过在低鞘流锥形尖端纳米电喷雾发射器上进行锥形射流纳米喷雾,最大限度地提高了离子生成效率。该平台提供了额外的肽依赖性信息,即碰撞截面,以过滤化学噪声并提高序列鉴定和检测限。检测限达到亚皮摩尔或约 30 zmol(约 18000 个拷贝)水平。即使在去除循环血液成分(灌注)后,也可以从下丘脑室旁核 (PVN) 中检测和定量检测到小鼠组织样本中的所有 9 种靶向血管紧张素肽。我们预计,CE-ESI 与 timsTOF HRMS 将广泛适用于脑肽组的超灵敏检测,以更好地了解大脑。

相似文献

9
A robust sheath-flow CE-MS interface for hyphenation with Orbitrap MS.用于与轨道阱 MS 联用的稳健鞘流 CE-MS 接口。
Electrophoresis. 2020 Aug;41(15):1280-1286. doi: 10.1002/elps.202000044. Epub 2020 May 18.

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验