Suppr超能文献

超低功耗微控制器上的心电图心律失常分类

ECG Arrhythmia Classification on an Ultra-Low-Power Microcontroller.

作者信息

Dekimpe Remi, Bol David

出版信息

IEEE Trans Biomed Circuits Syst. 2022 Jun;16(3):456-466. doi: 10.1109/TBCAS.2022.3182159. Epub 2022 Jul 12.

Abstract

Wearable biomedical systems allow doctors to continuously monitor their patients over longer periods, which is especially useful to detect rarely occurring events such as cardiac arrhythmias. Recent monitoring systems often embed signal processing capabilities to directly identify events and reduce the amount of data. This work is the first to document a complete beat-to-beat arrhythmia classification system implemented on a custom ultra-low-power microcontroller. It includes a single-channel analog front-end (AFE) circuit for electrocardiogram (ECG) signal acquisition, and a digital back-end (DBE) processor to execute the support vector machine (SVM) classification software with a Cortex-M4 CPU. The low-noise instrumentation amplifier in the AFE consumes 1.4 μW and has an input-referred noise of 0.9 μV RMS. The all-digital time-based ADC achieves 10-bit effective resolution over a 250-Hz bandwidth with an area of only 900 μm . The classification software reaches a sensitivity of 82.6% and 88.9% for supraventricular and ventricular arrhythmias respectively on the MIT-BIH arrhythmia database. The proposed system has been prototyped on the SleepRider SoC, a 28-nm fully-depleted silicon on insulator (FD-SOI) 3.1-mm chip. It consumes 13.1 μW on average from a 1.8-V supply.

摘要

可穿戴生物医学系统使医生能够对患者进行更长时间的持续监测,这对于检测罕见事件(如心律失常)特别有用。最近的监测系统通常嵌入信号处理功能,以直接识别事件并减少数据量。这项工作首次记录了一个在定制超低功耗微控制器上实现的完整逐搏心律失常分类系统。它包括一个用于心电图(ECG)信号采集的单通道模拟前端(AFE)电路,以及一个用于使用Cortex-M4 CPU执行支持向量机(SVM)分类软件的数字后端(DBE)处理器。AFE中的低噪声仪表放大器功耗为1.4μW,输入参考噪声为0.9μV RMS。全数字时间基准ADC在250Hz带宽上实现了10位有效分辨率,面积仅为900μm 。在MIT-BIH心律失常数据库上,分类软件对室上性和室性心律失常的灵敏度分别达到82.6%和88.9%。所提出的系统已在SleepRider SoC上进行了原型设计,这是一款28纳米全耗尽绝缘体上硅(FD-SOI)3.1毫米芯片。它从1.8V电源平均消耗13.1μW。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验