Dinesh Chinthaka, Cheung Gene, Bajic Ivan V
IEEE Trans Image Process. 2022;31:4117-4132. doi: 10.1109/TIP.2022.3166644. Epub 2022 Jun 20.
Point cloud (PC) is a collection of discrete geometric samples of a physical object in 3D space. A PC video consists of temporal frames evenly spaced in time, each containing a static PC at one time instant. PCs in adjacent frames typically do not have point-to-point (P2P) correspondence, and thus exploiting temporal redundancy for PC restoration across frames is difficult. In this paper, we focus on the super-resolution (SR) problem for PC video: increase point density of PCs in video frames while preserving salient geometric features consistently across time. We accomplish this with two ideas. First, we establish partial P2P coupling between PCs of adjacent frames by interpolating interior points in a low-resolution PC patch in frame t and translating them to a corresponding patch in frame t+1 , via a motion model computed by iterative closest point (ICP). Second, we promote piecewise smoothness in 3D geometry in each patch using feature graph Laplacian regularizer (FGLR) in an easily computable quadratic form. The two ideas translate to an unconstrained quadratic programming (QP) problem with a system of linear equations as solution-one where we ensure the numerical stability by upper-bounding the condition number of the coefficient matrix. Finally, to improve the accuracy of the ICP motion model, we re-sample points in a super-resolved patch at time t to better match a low-resolution patch at time t+1 via bipartite graph matching after each SR iteration. Experimental results show temporally consistent super-resolved PC videos generated by our scheme, outperforming SR competitors that optimized on a per-frame basis, in two established PC metrics.
点云(PC)是三维空间中物理对象的离散几何样本集合。PC视频由时间上均匀间隔的时间帧组成,每个时间帧在某一时刻包含一个静态点云。相邻帧中的点云通常没有点对点(P2P)对应关系,因此利用时间冗余来跨帧恢复点云很困难。在本文中,我们专注于PC视频的超分辨率(SR)问题:增加视频帧中点云的点密度,同时在时间上始终保持显著的几何特征。我们通过两个思路来实现这一点。首先,我们通过在帧t的低分辨率PC补丁中内插内部点,并通过迭代最近点(ICP)计算的运动模型将它们平移到帧t + 1中的相应补丁,在相邻帧的点云之间建立部分P2P耦合。其次,我们使用特征图拉普拉斯正则化器(FGLR)以易于计算的二次形式促进每个补丁中三维几何的分段平滑性。这两个思路转化为一个无约束二次规划(QP)问题,其解为一个线性方程组——在这个问题中,我们通过限制系数矩阵的条件数来确保数值稳定性。最后,为了提高ICP运动模型的准确性,我们在每次SR迭代后,通过二分图匹配对时间t处超分辨补丁中的点进行重新采样,以更好地匹配时间t + 1处的低分辨率补丁。实验结果表明,我们的方案生成了时间上一致的超分辨PC视频,在两个既定的PC指标上优于逐帧优化的SR竞争对手。