Dinesh Chinthaka, Cheung Gene, Bajic Ivan V
IEEE Trans Image Process. 2020 Jan 30. doi: 10.1109/TIP.2020.2969052.
Point cloud is a collection of 3D coordinates that are discrete geometric samples of an object's 2D surfaces. Imperfection in the acquisition process means that point clouds are often corrupted with noise. Building on recent advances in graph signal processing, we design local algorithms for 3D point cloud denoising. Specifically, we design a signal-dependent feature graph Laplacian regularizer (SDFGLR) that assumes surface normals computed from point coordinates are piecewise smooth with respect to a signal-dependent graph Laplacian matrix. Using SDFGLR as a signal prior, we formulate an optimization problem with a general 'p-norm fidelity term that can explicitly remove only two types of additive noise: small but non-sparse noise like Gaussian (using '2 fidelity term) and large but sparser noise like Laplacian (using '1 fidelity term). To establish a linear relationship between normals and 3D point coordinates, we first perform bipartite graph approximation to divide the point cloud into two disjoint node sets (red and blue). We then optimize the red and blue nodes' coordinates alternately. For '2-norm fidelity term, we iteratively solve an unconstrained quadratic programming (QP) problem, efficiently computed using conjugate gradient with a bounded condition number to ensure numerical stability. For '1-norm fidelity term, we iteratively minimize an '1-'2 cost function using accelerated proximal gradient (APG), where a good step size is chosen via Lipschitz continuity analysis. Finally, we propose simple mean and median filters for flat patches of a given point cloud to estimate the noise variance given the noise type, which in turn is used to compute a weight parameter trading off the fidelity term and signal prior in the problem formulation. Extensive experiments show state-of-the-art denoising performance among local methods using our proposed algorithms.
点云是一组三维坐标,是物体二维表面的离散几何样本。采集过程中的不完善意味着点云常常被噪声干扰。基于图信号处理的最新进展,我们设计了用于三维点云去噪的局部算法。具体而言,我们设计了一种信号相关特征图拉普拉斯正则化器(SDFGLR),它假设从点坐标计算出的表面法线相对于信号相关图拉普拉斯矩阵是分段光滑的。将SDFGLR用作信号先验,我们用一个通用的“p范数保真项”来构建一个优化问题,该保真项只能明确去除两种类型的加性噪声:像高斯噪声这样小但非稀疏的噪声(使用“2范数保真项”)和像拉普拉斯噪声这样大但更稀疏的噪声(使用“1范数保真项”)。为了在法线和三维点坐标之间建立线性关系,我们首先进行二分图近似,将点云划分为两个不相交的节点集(红色和蓝色)。然后我们交替优化红色和蓝色节点的坐标。对于“2范数保真项”,我们迭代求解一个无约束二次规划(QP)问题,使用具有有界条件数的共轭梯度高效计算以确保数值稳定性。对于“1范数保真项”,我们使用加速近端梯度(APG)迭代最小化一个“1 - 2成本函数”,其中通过利普希茨连续性分析选择一个好的步长。最后,我们针对给定的点云平面块提出简单的均值和中值滤波器,以根据噪声类型估计噪声方差,进而用于计算在问题公式中权衡保真项和信号先验的权重参数。大量实验表明,使用我们提出的算法在局部方法中具有领先的去噪性能。