Department of Energy Resources Engineering, Stanford University, Stanford, CA 94305.
Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853.
Proc Natl Acad Sci U S A. 2022 Jun 21;119(25):e2113985119. doi: 10.1073/pnas.2113985119. Epub 2022 Jun 13.
Subsurface environments host diverse microorganisms in fluid-filled fractures; however, little is known about how geological and hydrological processes shape the subterranean biosphere. Here, we sampled three flowing boreholes weekly for 10 mo in a 1478-m-deep fractured rock aquifer to study the role of fracture activity (defined as seismically or aseismically induced fracture aperture change) and advection on fluid-associated microbial community composition. We found that despite a largely stable deep-subsurface fluid microbiome, drastic community-level shifts occurred after events signifying physical changes in the permeable fracture network. The community-level shifts include the emergence of microbial families from undetected to over 50% relative abundance, as well as the replacement of the community in one borehole by the earlier community from a different borehole. Null-model analysis indicates that the observed spatial and temporal community turnover was primarily driven by stochastic processes (as opposed to deterministic processes). We, therefore, conclude that the observed community-level shifts resulted from the physical transport of distinct microbial communities from other fracture(s) that outpaced environmental selection. Given that geological activity is a major cause of fracture activity and that geological activity is ubiquitous across space and time on Earth, our findings suggest that advection induced by geological activity is a general mechanism shaping the microbial biogeography and diversity in deep-subsurface habitats across the globe.
地下环境在充满流体的裂缝中栖息着多种多样的微生物;然而,人们对于地质和水文过程如何塑造地下生物圈知之甚少。在这里,我们每周从一个 1478 米深的断裂岩石含水层中抽取三个流动钻孔进行采样,持续 10 个月,以研究断裂活动(定义为地震或非地震诱导的裂缝开度变化)和对流对流体相关微生物群落组成的作用。我们发现,尽管深部地下流体微生物组在很大程度上保持稳定,但在可渗透裂缝网络发生物理变化的事件之后,群落水平发生了剧烈变化。群落水平的变化包括微生物家族从未检测到到超过 50%相对丰度的出现,以及一个钻孔中的群落被来自不同钻孔的早期群落所取代。零模型分析表明,观察到的时空群落更替主要是由随机过程(而不是确定性过程)驱动的。因此,我们得出结论,观察到的群落水平变化是由于来自其他裂缝的不同微生物群落的物理传输超过了环境选择,从而导致了群落水平变化。鉴于地质活动是断裂活动的主要原因,并且地质活动在地球上的空间和时间上无处不在,我们的发现表明,由地质活动引起的对流是塑造全球深部地下栖息地微生物生物地理学和多样性的一般机制。