Suppr超能文献

基于 TKEO 的不同算法在肌电信号突变点检测中的比较。

Comparison of different algorithms based on TKEO for EMG change point detection.

机构信息

College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin, People's Republic of China.

出版信息

Physiol Meas. 2022 Jul 7;43(7). doi: 10.1088/1361-6579/ac783f.

Abstract

A significant challenge in surface electromyography (EMG) is the accurate identification of onset and offset of muscle activation while maintaining high real-time performance. Teager-Kaiser energy operator (TKEO) is widely used in muscle activity monitoring systems because of its computational simplicity and strong real-time performance. However, in contrast to TKEO ontology, few studies have examined how well the energy operator variants from multiple fields perform in conditioning EMG signals. This paper aims to investigate the role of the energy operator and its variants in EMG change point detection by a threshold detector.To compare the stability and accuracy of TKEO and its variants for EMG change point detection, the EMG data of extensor carpi radialis longus and flexor carpi radialis were acquired from twenty participants operating a controller under normal and disturbed conditions, and EMG change point detection was performed by four energy operators and their rectified versions.Based on the 'standard' change points collected by the controller, the detection results were evaluated by three evaluation indexes: detection rate,1 Score, and accuracy. The experimental results show that the multiresolution energy operator and the TKEO with rectified (abs-TKEO) are more suitable for EMG change point detection.This paper compared the effect of the energy operator and its variants on a threshold-based EMG change point detector. The experimental results in this paper can provide a reference for the selection of EMG signal conditioning methods to improve the detection performance of the EMG change point detector.

摘要

在表面肌电图(EMG)中,一个显著的挑战是在保持高实时性能的同时,准确识别肌肉激活的起始和结束。Teager-Kaiser 能量算子(TKEO)由于其计算简单和强大的实时性能,被广泛应用于肌肉活动监测系统中。然而,与 TKEO 本体不同,很少有研究探讨来自多个领域的能量算子变体在调节 EMG 信号方面的性能如何。本文旨在通过阈值检测器研究能量算子及其变体在 EMG 突变点检测中的作用。

为了比较 TKEO 及其变体在 EMG 突变点检测中的稳定性和准确性,从二十名参与者在正常和干扰条件下操作控制器的过程中获取了伸腕肌和屈腕肌的 EMG 数据,并通过四个能量算子及其整流版本进行了 EMG 突变点检测。基于控制器收集的“标准”突变点,通过三个评价指标(检测率、1 分数和准确率)评估检测结果。实验结果表明,多分辨率能量算子和整流后的 TKEO(abs-TKEO)更适合 EMG 突变点检测。

本文比较了能量算子及其变体对基于阈值的 EMG 突变点检测器的影响。本文的实验结果可为选择 EMG 信号调节方法提供参考,以提高 EMG 突变点检测器的检测性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验