Suppr超能文献

迈向用体外试验替代动物试验:一种基因表达生物标志物可预测体外和体内雌激素受体活性。

Towards replacement of animal tests with in vitro assays: a gene expression biomarker predicts in vitro and in vivo estrogen receptor activity.

作者信息

Corton J Christopher, Liu Jie, Kleinstreuer Nicole, Gwinn Maureen R, Ryan Natalia

机构信息

Center for Computational Toxicology and Exposure, US-EPA, Research Triangle Park, NC, 27711, USA.

Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27711, USA.

出版信息

Chem Biol Interact. 2022 Aug 25;363:109995. doi: 10.1016/j.cbi.2022.109995. Epub 2022 Jun 11.

Abstract

High-throughput transcriptomics (HTTr) has the potential to support efforts to reduce or replace some animal tests. In past studies, we described a computational approach utilizing a gene expression biomarker consisting of 46 genes to predict estrogen receptor (ER) activity after chemical exposure in ER-positive human breast cancer cells including the MCF-7 cell line. We hypothesized that the biomarker model could identify ER activities of chemicals examined by Endocrine Disruptor Screening Program (EDSP) Tier 1 screening assays in which transcript profiles of the same chemicals were examined in MCF-7 cells. For the 62 chemicals examined including 5 chemicals examined in this study using RNA-Seq, the ER biomarker model accuracy was 1) 97% for in vitro reference chemicals, 2) 76-85% for guideline uterotrophic assays, and 3) 87-88% for guideline and nonguideline uterotrophic assays. For the same chemicals, these accuracies were similar or slightly better than those of the ToxCast ER model based on 18 in vitro assays. The performance of the ER biomarker model indicates that HTTr interpreted using the ER biomarker correctly identifies active and inactive ER reference chemicals. As part of the HTTr screening program the approach could rapidly identify chemicals with potential ER bioactivities for additional screening and testing.

摘要

高通量转录组学(HTTr)有潜力支持减少或替代某些动物试验的工作。在过去的研究中,我们描述了一种计算方法,该方法利用由46个基因组成的基因表达生物标志物来预测化学物质暴露于包括MCF-7细胞系在内的雌激素受体(ER)阳性人乳腺癌细胞后ER的活性。我们假设该生物标志物模型可以识别通过内分泌干扰物筛选计划(EDSP)一级筛选试验检测的化学物质的ER活性,在这些试验中,在MCF-7细胞中检测了相同化学物质的转录谱。对于所检测的62种化学物质,包括本研究中使用RNA测序检测的5种化学物质,ER生物标志物模型的准确率为:1)体外参考化学物质为97%,2)指南性子宫增重试验为76 - 85%,3)指南性和非指南性子宫增重试验为87 - 88%。对于相同的化学物质,这些准确率与基于18种体外试验的ToxCast ER模型的准确率相似或略高。ER生物标志物模型的性能表明,使用ER生物标志物进行解释的HTTr能够正确识别有活性和无活性的ER参考化学物质。作为HTTr筛选计划的一部分,该方法可以快速识别具有潜在ER生物活性的化学物质,以便进行进一步的筛选和测试。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验