Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Kingdom of Saudi Arabia.
Nanotechnology and Advanced Materials Program, Energy and Building Research Center, Kuwait Institute for Scientific Research (KISR), P.O. Box 24885, 13109, Safat, Kuwait.
Environ Sci Pollut Res Int. 2022 Nov;29(52):78472-78482. doi: 10.1007/s11356-022-21336-1. Epub 2022 Jun 13.
BiVO has been constructed into heterojunctions with TiO to boost the photocatalytic ability under visible illumination. Here, mesoporous BiVO/TiO nanocomposites have been fabricated by a facile sol-gel approach utilizing nonionic surfactant and addressed for morphological, optical, structural, and degradation of ciprofloxacin (CIP) in water under visible illumination as an antibiotic pollutant model. The TEM images demonstrated that the TiO NPs are homogenous in terms of shape and size (15 ± 5 nm). The introduction of BiVO into mesoporous TiO could effectively enhance the rapid separation efficiency of the photoinduced carriers and optical absorption. The 3%BiVO/TiO photocatalyst possessed the best degradation efficiency (100%) within 60 min which was promoted 20-folds larger than TiO NPs (5%). 3%BiVO/TiO nanocomposite exhibited the fastest degradation rate (2.15 × 10 min), which was 40 times faster than bare TiO photocatalyst (0.05 × 10 min). The enhanced photocatalytic ability originated from superior charge separation characteristics and high solar energy absorption in mesopore structures. The recombination rate and mobility of charge carriers were characterized utilizing photoluminescence (PL) and photoelectrochemical measurements. This work highlights the advantages of mesoporous heterojunction BiVO/TiO nanocomposites for photocatalytic performances and provides a multilateral route to design an effective wide-spectrum response photocatalyst for the development of comparable materials. The photocatalytic mechanism for degradation CIP over BiVO/TiO was discussed in detail..
BIVO 已与 TiO 构建为异质结,以在可见光照射下提高光催化能力。在这里,通过使用非离子表面活性剂的简便溶胶-凝胶方法制备了介孔 BiVO/TiO 纳米复合材料,并将其用于水中环丙沙星 (CIP) 的形态、光学、结构和降解,作为抗生素污染物模型。在可见光照射下。TEM 图像表明,TiO NPs 在形状和尺寸上是均匀的(15±5nm)。BIVO 引入介孔 TiO 中可以有效地提高光致载流子的快速分离效率和光吸收。3%BiVO/TiO 光催化剂在 60 分钟内表现出最佳的降解效率(100%),比 TiO NPs(5%)提高了 20 倍。3%BiVO/TiO 纳米复合材料表现出最快的降解速率(2.15×10-1 min-1),比裸 TiO 光催化剂(0.05×10-1 min-1)快 40 倍。增强的光催化能力源于介孔结构中优异的电荷分离特性和对太阳能的高吸收。利用光致发光 (PL) 和光电化学测量来表征载流子的复合率和迁移率。这项工作突出了介孔异质结 BiVO/TiO 纳米复合材料在光催化性能方面的优势,并为设计有效宽光谱响应光催化剂提供了一种多方面的途径,以开发可比材料。详细讨论了 BiVO/TiO 上 CIP 降解的光催化机制。