Suppr超能文献

间期动态网络在颞叶内侧癫痫中的转变。

Interictal dynamic network transitions in mesial temporal lobe epilepsy.

机构信息

The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.

Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA.

出版信息

Epilepsia. 2022 Sep;63(9):2242-2255. doi: 10.1111/epi.17325. Epub 2022 Jun 26.

Abstract

OBJECTIVE

To reveal the possible routine of brain network dynamic alterations in patients with mesial temporal lobe epilepsy (mTLE) and to establish a predicted model of seizure recurrence during interictal periods.

METHODS

Seventy-nine unilateral mTLE patients with hippocampal sclerosis and 97 healthy controls from two centers were retrospectively enrolled. Dynamic brain configuration analyses were performed with resting-state functional magnetic resonance imaging (MRI) data to quantify the functional stability over time and the dynamic interactions between brain regions. Relationships between seizure frequency and ipsilateral hippocampal module allegiance were evaluated using a machine learning predictive model.

RESULTS

Compared to the healthy controls, patients with mTLE displayed an overall higher dynamic network, switching mainly in the epileptogenic regions (false discovery rate [FDR] corrected p-FDR < .05). Moreover, the dynamic network configuration in mTLE was characterized by decreased recruitment (intra-network communication), and increased integration (inter-network communication) among hippocampal systems and large-scale higher-order brain networks (p-FDR < .05). We further found that the dynamic interactions between the hippocampal system and the default-mode network (DMN) or control networks exhibited an opposite distribution pattern (p-FDR < .05). Strikingly, we showed that there was a robust association between predicted seizure frequency based on the ipsilateral hippocampal-DMN dynamics model and actual seizure frequency (p-perm < .001).

SIGNIFICANCE

These findings suggest that the interictal brain of mTLE is characterized by dynamical shifts toward unstable state. Our study provides novel insights into the brain dynamic network alterations and supports the potential use of DMN dynamic parameters as candidate neuroimaging markers in monitoring the seizure frequency clinically during interictal periods.

摘要

目的

揭示内侧颞叶癫痫(MTLE)患者脑网络动态改变的可能规律,并建立发作间期癫痫复发的预测模型。

方法

回顾性纳入两个中心的 79 例单侧 MTLE 伴海马硬化患者和 97 例健康对照者。使用静息态功能磁共振成像(MRI)数据进行动态脑配置分析,以量化随时间的功能稳定性和脑区之间的动态相互作用。使用机器学习预测模型评估癫痫发作频率与同侧海马模块忠诚度之间的关系。

结果

与健康对照组相比,MTLE 患者的整体动态网络更高,主要在致痫区发生转换(经假发现率校正的 FDR 校正后 p-FDR<.05)。此外,MTLE 中的动态网络配置表现为海马系统内的募集减少(内网络通讯),以及海马系统与大规模高阶脑网络之间的整合增加(外网络通讯)(p-FDR<.05)。我们进一步发现,海马系统与默认模式网络(DMN)或控制网络之间的动态相互作用呈现出相反的分布模式(p-FDR<.05)。引人注目的是,我们发现基于同侧海马-DMN 动力学模型预测的癫痫发作频率与实际癫痫发作频率之间存在很强的关联(p-perm<.001)。

意义

这些发现表明,MTLE 的发作间期大脑表现出向不稳定状态的动态转变。我们的研究提供了对脑动态网络改变的新见解,并支持 DMN 动态参数作为发作间期监测癫痫发作频率的潜在神经影像学标志物的应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验