Department of Pediatrics, Division of Neonatology, Developmental Vascular Biology Program, Medical College of Wisconsin, Children's Research Institute (CRI), Milwaukee, WI, United States.
Department of Pediatrics, Division of Quantitative Health Sciences, Medical College of Wisconsin, CRI, Milwaukee, WI, United States.
Biochem Pharmacol. 2022 Aug;202:115143. doi: 10.1016/j.bcp.2022.115143. Epub 2022 Jun 11.
In the developing vasculature, cilia, microtubule-based organelles that project from the apical surface of endothelial cells (ECs), have been identified to function cell autonomously to promote vascular integrity and prevent hemorrhage. To date, the underlying mechanisms of endothelial cilia formation (ciliogenesis) are not fully understood. Understanding these mechanisms is likely to open new avenues for targeting EC-cilia to promote vascular stability. Here, we hypothesized that brain ECs ciliogenesis and the underlying mechanisms that control this process are critical for brain vascular stability. To investigate this hypothesis, we utilized multiple approaches including developmental zebrafish model system and primary cell culture systems. In the p21 activated kinase 2 (pak2a) zebrafish vascular stability mutant [redhead (rhd)] that shows cerebral hemorrhage, we observed significant decrease in cilia-inducing protein ADP Ribosylation Factor Like GTPase 13B (Arl13b), and a 4-fold decrease in cilia numbers. Overexpressing ARL13B-GFP fusion mRNA rescues the cilia numbers (1-2-fold) in brain vessels, and the cerebral hemorrhage phenotype. Further, this phenotypic rescue occurs at a critical time in development (24 h post fertilization), prior to initiation of blood flow to the brain vessels. Extensive biochemical mechanistic studies in primary human brain microvascular ECs implicate ligands platelet-derived growth factor-BB (PDGF-BB), and vascular endothelial growth factor-A (VEGF-A) trigger PAK2-ARL13B ciliogenesis and signal through cell surface VEGFR-2 receptor. Thus, collectively, we have implicated a critical brain ECs ciliogenesis signal that converges on PAK2-ARL13B proteins to promote vascular stability.
在发育中的脉管系统中,纤毛是一种从内皮细胞(ECs)的顶端表面伸出的微管细胞器,已被确定为自主发挥作用,以促进血管完整性并防止出血。迄今为止,内皮细胞纤毛形成(纤毛发生)的潜在机制尚不完全清楚。了解这些机制可能为靶向 EC-纤毛以促进血管稳定性开辟新途径。在这里,我们假设脑 ECs 的纤毛发生及其控制该过程的潜在机制对于脑血管稳定性至关重要。为了研究这个假设,我们利用了多种方法,包括发育中的斑马鱼模型系统和原代细胞培养系统。在表现出脑内出血的 p21 激活激酶 2(pak2a)斑马鱼血管稳定性突变体[红头(rhd)]中,我们观察到诱导纤毛蛋白 ADP 核糖基化因子样 GTP 酶 13B(Arl13b)显著减少,纤毛数量减少了 4 倍。过表达 ARL13B-GFP 融合 mRNA 可挽救脑血管中的纤毛数量(1-2 倍)和脑内出血表型。此外,这种表型挽救发生在发育的关键时期(受精后 24 小时),早于血流向脑血管的起始时间。在原代人脑微血管内皮细胞中进行的广泛生化机制研究表明,配体血小板衍生生长因子-BB(PDGF-BB)和血管内皮生长因子-A(VEGF-A)触发 PAK2-ARL13B 纤毛发生,并通过细胞表面 VEGFR-2 受体传递信号。因此,总的来说,我们已经确定了一个关键的脑 ECs 纤毛发生信号,该信号集中在 PAK2-ARL13B 蛋白上,以促进血管稳定性。