School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
Environ Sci Pollut Res Int. 2022 Nov;29(52):79126-79139. doi: 10.1007/s11356-022-21347-y. Epub 2022 Jun 15.
Understanding how the morphology of a layered double hydroxide (LDH)-based catalyst alters its catalytic activity provides an available strategy for the rational design and fabrication of high-efficiency catalysts at a micro-scale. Herein, three nickel-iron layered double hydroxide (NiFe-LDH) catalysts including 2D-plate-like hexagon (P-NiFe-LDH), 2D/3D-flower-like solid sphere (FS-NiFe-LDH), and 2D/3D-flower-like hollow sphere (FH-NiFe-LDH) with regulable oxygen vacancies (OVs) were fabricated via a morphological regulation method of Ostwald ripening. The experimental results demonstrated that the three types of NiFe-LDH exhibited different abilities to activate persulfate (PS) for the abatement of acid orange 7 (AO7) with a sequence of FH-NiFe-LDH > FS-NiFe-LDH > P-NiFe-LDH. Particularly, the FH-NiFe-LDH with a hollow structure exhibited the most considerable activity with the first-order rate constant up to k = 0.02639 min, benefiting from the highly accessible surface areas, higher intrinsic activity of the exposed crystal planes, and abundant OVs. Characterizations further confirmed that these properties could profoundly allow for more exposure of active sites and enhance the reactivity of OV-connected Ni or Fe to facilitate electron transfer and generate more reactive radicals, therefore elucidating the morphologic origin of catalytic performance. Based on the quenching experiments, sulfate radicals (SO), hydroxyl radicals (OH), and oxygen radicals (O) were identified to be involved in the decomposition process. Furthermore, the continuous redox cycle of Ni(II)/Ni(III)/Ni(II) and Fe(II)/Fe(III)/Fe(II) was responsible for the generation of active radicals via activating PS.
了解层状双氢氧化物(LDH)基催化剂的形态如何改变其催化活性,为在微观尺度上合理设计和制备高效催化剂提供了一种可行的策略。在此,通过奥斯特瓦尔德熟化的形态调节方法制备了三种具有可调氧空位(OV)的二维板状六边形(P-NiFe-LDH)、二维/三维花状实心球(FS-NiFe-LDH)和二维/三维花状空心球(FH-NiFe-LDH)镍铁层状双氢氧化物(NiFe-LDH)催化剂。实验结果表明,三种类型的 NiFe-LDH 对过硫酸盐(PS)的活化能力不同,用于降解酸性橙 7(AO7)的顺序为 FH-NiFe-LDH>FS-NiFe-LDH>P-NiFe-LDH。特别是具有中空结构的 FH-NiFe-LDH 表现出最高的活性,其一级速率常数高达 k=0.02639 min,这得益于高可及表面积、暴露晶面的固有活性更高以及丰富的 OV。特性进一步证实,这些特性可以深刻地允许更多的活性位暴露,并增强与 OV 相连的 Ni 或 Fe 的反应性,从而促进电子转移并产生更多的反应性自由基,从而阐明了催化性能的形态起源。基于猝灭实验,鉴定出硫酸根自由基(SO)、羟基自由基(OH)和氧自由基(O)参与了分解过程。此外,Ni(II)/Ni(III)/Ni(II)和 Fe(II)/Fe(III)/Fe(II)的连续氧化还原循环负责通过激活 PS 产生活性自由基。