Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland.
Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland.
Environ Sci Technol. 2022 Feb 1;56(3):1771-1779. doi: 10.1021/acs.est.1c07811. Epub 2022 Jan 21.
An appealing strategy in the direction of circular chemistry and sustainable nitrogen exploitation is to efficiently convert NOx pollutants into low-toxic products and simultaneously provide crop plants with metabolic nitrogen. This study demonstrates that such a scenario can be realized by a defect- and morphology-coengineered Ni-Fe-layered double hydroxide (NiFe-LDH) comprising ultrathin nanosheets. Rich oxygen vacancies are introduced onto the NiFe-LDH surface, which facilitate charge carrier transfer and enable photocatalytic O activation into superoxide radicals (O) under visible light. O on NiFe-LDH thermodynamically oxidizes NO into nitrate with selectivity over 92%, thus suppressing dangerous NO emissions. By merit of abundant mesopores on NiFe-LDH ultrathin nanosheets bearing a high surface area (103.08 m/g), nitrate can be readily stored without compromising the NO oxidation reactivity or selectivity for long-term usage. The nitrate species can be easily washed off the NiFe-LDH surface and then enriched in the liquid form as easy-to-use chemicals.
一种有吸引力的循环化学和可持续氮利用策略是将氮氧化物污染物高效转化为低毒产物,并同时为作物植物提供代谢氮。本研究表明,通过包含超薄纳米片的缺陷和形态共工程化的镍铁层状双氢氧化物(NiFe-LDH)可以实现这种情况。在 NiFe-LDH 表面引入丰富的氧空位,促进电荷载流子转移,并使光催化 O 在可见光下活化成超氧自由基(O)。O 在 NiFe-LDH 上热力学上将 NO 氧化成硝酸盐,选择性超过 92%,从而抑制危险的 NO 排放。由于 NiFe-LDH 超薄纳米片上具有丰富的中孔和高表面积(103.08 m/g),硝酸盐可以在不影响 NO 氧化反应性或长期使用选择性的情况下容易地储存。硝酸盐物种可以很容易地从 NiFe-LDH 表面洗掉,然后富集在液体形式中作为易于使用的化学品。