Materials Processing & Microsystems Laboratory, CSIR - Central Mechanical Engineering Research Institute (CMERI), Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India.
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
Small. 2022 Jul;18(28):e2202033. doi: 10.1002/smll.202202033. Epub 2022 Jun 15.
The identification of hydrogen as green fuel in the near future has stirred global realization toward a sustainable outlook and thus boosted extensive research in the field of water electrolysis focusing on the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). A huge class of compounds consisting of transition metal-based nitrides, carbides, chalcogenides, phosphides, and borides, which can be collectively termed transition metal non-oxides (TMNOs), has emerged recently as an efficient class of electrocatalysts in terms of performance and longevity when compared to transition metal oxides (TMOs). Moreover, the superiority of TMNOs over TMOs to effectively catalyze not only OERs but also HERs and ORRs renders bifunctionality and even trifunctionality in some cases and therefore can replace conventional noble metal electrocatalysts. In this review, the crystal structure and phases of different classes of nanostructured TMNOs are extensively discussed, focusing on recent advances in design strategies by various regulatory synthetic routes, and hence diversified properties of TMNOs are identified to serve as next-generation bi/trifunctional electrocatalysts. The challenges and future perspectives of materials in the field of energy conversion and storage aiding toward a better hydrogen economy are also discussed in this review.
在不久的将来,氢气被确定为绿色燃料,这促使全球意识到可持续发展的重要性,从而推动了广泛的水电解研究,重点是析氢反应(HER)、析氧反应(OER)和氧还原反应(ORR)。最近出现了一大类由过渡金属基氮化物、碳化物、硫属化物、磷化物和硼化物组成的化合物,可统称为过渡金属非氧化物(TMNOs),与过渡金属氧化物(TMOs)相比,它们在性能和寿命方面表现出高效的电催化剂。此外,TMNOs 比 TMOs 更优越,不仅能有效地催化 OERs,还能催化 HERs 和 ORRs,在某些情况下具有双功能甚至三功能,因此可以替代传统的贵金属电催化剂。在这篇综述中,广泛讨论了不同类别的纳米结构 TMNOs 的晶体结构和相,重点介绍了通过各种调节合成途径的设计策略的最新进展,从而确定了 TMNOs 的多样化特性,以作为下一代双/三功能电催化剂。本文还讨论了在能源转换和存储领域的材料面临的挑战和未来展望,以促进更好的氢气经济。