Zhou Ying, Zhao Yaqi, Shi Xiaofan, Tang Yanhui, Yang Zuoyin, Pu Min, Lei Ming
State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.
School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing, 100029, China.
Dalton Trans. 2022 Jul 5;51(26):10020-10028. doi: 10.1039/d2dt01352e.
Herein, a density functional theory (DFT) study was performed to investigate thoroughly the cascade reaction mechanism for the hydrogenation of carbon dioxide to methanol catalyzed by ruthenium pincer complex [RuH(MePCHSiMe)NH(CO)]. Three catalytic stages involving the hydrogenation of carbon dioxide (stage I), formic acid (stage II) and formaldehyde (stage III) were studied. The calculated results show that the dominant H activation strategy in the hydrogenation of CO to methanol may not be the methanol-assisted H activation, but the formate-assisted H activation. In this cascade reaction, all energy spans of stage I, II and III are 20.2 kcal mol of the formate-assisted H activation. This implies that it could occur under mild conditions. Meanwhile, the catalyst is proposed to be efficient for the transfer hydrogenation using isopropanol as the hydrogen resource, and the ruthenium pincer complexes [RuH(MePCHSiMe)NH(CO)], [RuH(PhPCHSiMe)NH(CO)] and [RuH(MePCHSiMe)NH(CO)] exhibit similar catalytic activities for the hydrogenation of CO to methanol.
在此,进行了一项密度泛函理论(DFT)研究,以深入探究钌钳形配合物[RuH(MePCHSiMe)NH(CO)]催化二氧化碳加氢制甲醇的级联反应机理。研究了涉及二氧化碳加氢(阶段I)、甲酸(阶段II)和甲醛(阶段III)的三个催化阶段。计算结果表明,CO加氢制甲醇过程中主要的H活化策略可能不是甲醇辅助的H活化,而是甲酸根辅助的H活化。在该级联反应中,甲酸根辅助的H活化下阶段I、II和III的所有能量跨度均为20.2 kcal/mol。这意味着它可以在温和条件下发生。同时,提出该催化剂对于以异丙醇作为氢源的转移加氢是有效的,并且钌钳形配合物[RuH(MePCHSiMe)NH(CO)]、[RuH(PhPCHSiMe)NH(CO)]和[RuH(MePCHSiMe)NH(CO)]对CO加氢制甲醇表现出相似的催化活性。