Suppr超能文献

贵金属修饰的纳米结构氧化锌:用于提升电阻型氢气传感性能的策略。

Noble Metal-Decorated Nanostructured Zinc Oxide: Strategies to Advance Chemiresistive Hydrogen Gas Sensing.

机构信息

Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), Research Institute, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia.

Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), Research Institute, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia.

出版信息

Chem Rec. 2022 Jul;22(7):e202200090. doi: 10.1002/tcr.202200090. Epub 2022 Jun 14.

Abstract

Hydrogen (H ) is known as the key player in the alternative and renewable energy revolution and henceforth H production, transportation, storage and usage have been a major interest of current research. However, due to severe safety concerns, strategies are indispensable to devise superior H sensors, particularly selective and sensitive H sensors. In this personal account, three specific gas sensing constructs; zinc oxide (ZnO) nanostructures-, noble metal nanoparticles-decorated ZnO- and noble metal nanoparticles-decorated ZnO nanostructures on reduced graphene oxide (rGO)-based H sensors have been demonstrated. The dynamic response and H sensing characteristics of ZnO nanostructures-based H sensors were found to be improved compared to those of pristine ZnO. High-resolution field emission scanning electron microscopy (FESEM) confirmed the flower-like nanostructures that had higher surface area around the nanoscale petals. The mechanism behind the superior sensing characteristics of ZnO nanostructures-based H sensor has been demonstrated. Decoration of ZnO nanostructures with noble metal nanoparticles, particularly platinum (Pt) and gold (Au) was observed to be useful in achieving better H sensing performance compared to that of ZnO nanostructures. The Pt- and Au-decorated ZnO nanostructures followed the well-known "Spill-over" mechanism in enhancing the H sensing characteristics. Abundant free electrons/holes generation and higher conductivity are two important parameters for designing selective and sensitive gas sensors. In this context, a hybrid nanocomposite, rGO-ZnO has been developed and decorated with noble metal nanoparticles, particularly Pt and Au. The ultimate sensing material has been characterized and compared to those of pristine ZnO, ZnO nanostructures and Pt- and Au-decorated ZnO for H gas sensing applications. Such systemic and focus strategies is critical not only for developing efficient H gas sensors but also for better understanding the mechanisms underlying such superior performance.

摘要

氢(H)被认为是替代和可再生能源革命的关键因素,因此 H 的生产、运输、储存和使用一直是当前研究的主要关注点。然而,由于严重的安全问题,需要设计出优越的 H 传感器,特别是选择性和灵敏性的 H 传感器。在本个人报告中,展示了三种特定的气体传感结构;基于氧化锌(ZnO)纳米结构的、贵金属纳米颗粒修饰的 ZnO-和贵金属纳米颗粒修饰的 ZnO 纳米结构在还原氧化石墨烯(rGO)上的 H 传感器。与原始 ZnO 相比,ZnO 纳米结构基 H 传感器的动态响应和 H 传感特性得到了改善。高分辨率场发射扫描电子显微镜(FESEM)证实了具有纳米级花瓣周围更高表面积的花状纳米结构。展示了 ZnO 纳米结构基 H 传感器优越传感特性的背后机制。观察到 ZnO 纳米结构用贵金属纳米颗粒(特别是铂(Pt)和金(Au))修饰有助于实现比 ZnO 纳米结构更好的 H 传感性能。Pt 和 Au 修饰的 ZnO 纳米结构遵循众所周知的“溢出”机制,增强了 H 传感特性。设计选择性和灵敏性气体传感器的两个重要参数是大量自由电子/空穴的产生和更高的电导率。在这种情况下,开发了 rGO-ZnO 杂化纳米复合材料,并使用贵金属纳米颗粒(特别是 Pt 和 Au)进行了修饰。对最终的传感材料进行了表征,并与原始 ZnO、ZnO 纳米结构以及 Pt 和 Au 修饰的 ZnO 进行了比较,以用于 H 气体传感应用。这种系统和有针对性的策略不仅对于开发高效的 H 气体传感器至关重要,而且对于更好地理解这种优越性能的机制也至关重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验