Instituto de Biotecnología y Biología Molecular (IBBM, CCT-CONICET-La Plata), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 115 49 y 50 (1900), Buenos Aires, La Plata, Argentina.
Braz J Microbiol. 2022 Sep;53(3):1633-1643. doi: 10.1007/s42770-022-00780-8. Epub 2022 Jun 15.
The acidity of soils significantly reduces the productivity of legumes mainly because of the detrimental effects of hydrogen ions on the legume plants, leading to the establishment of an inefficient symbiosis and poor biological nitrogen fixation. We recently reported the analysis of the fully sequenced genome of Rhizobium favelukesii LPU83, an alfalfa-nodulating rhizobium with a remarkable ability to grow, nodulate and compete in acidic conditions. To gain more insight into the genetic mechanisms leading to acid tolerance in R. favelukesii LPU83, we constructed a transposon mutant library and screened for mutants displaying a more acid-sensitive phenotype than the parental strain. We identified mutant Tn833 carrying a single-transposon insertion within LPU83_2531, an uncharacterized short ORF located immediately upstream from ubiF homolog. This gene encodes a protein with an enzymatic activity involved in the biosynthesis of ubiquinone. As the transposon was inserted near the 3' end of LPU83_2531 and these genes are cotranscribed as a part of the same operon, we hypothesized that the phenotype in Tn833 is most likely due to a polar effect on ubiF transcription.We found that a mutant in ubiF was impaired to grow at low pH and other abiotic stresses including 5 mM ascorbate and 0.500 mM Zn. Although the ubiF mutant retained the ability to nodulate alfalfa and Phaseolus vulgaris, it was unable to compete with the R. favelukesii LPU83 wild-type strain for nodulation in Medicago sativa and P. vulgaris, suggesting that ubiF is important for competitiveness. Here, we report for the first time an ubiF homolog being essential for nodulation competitiveness and tolerance to specific stresses in rhizobia.
土壤的酸度会显著降低豆科植物的生产力,主要是因为氢离子对豆科植物有不利影响,导致低效共生和生物固氮不良。我们最近报道了苜蓿根瘤菌 Rhizobium favelukesii LPU83 全序列基因组的分析,该菌具有在酸性条件下生长、结瘤和竞争的显著能力,是一种苜蓿根瘤菌。为了更深入地了解导致 R. favelukesii LPU83 耐酸的遗传机制,我们构建了转座子突变体文库,并筛选出比亲本菌株表现出更敏感表型的突变体。我们发现携带单个转座子插入的突变体 Tn833,插入到 LPU83_2531 内,这是一个未被描述的短 ORF,位于 ubiF 同源物的上游。该基因编码一种具有参与泛醌生物合成的酶活性的蛋白质。由于转座子插入到 LPU83_2531 的 3'端,并且这些基因作为同一个操纵子的一部分转录,我们假设 Tn833 中的表型很可能是由于 ubiF 转录的极性效应。我们发现 ubiF 突变体在低 pH 和其他非生物胁迫下(包括 5mM 抗坏血酸和 0.500mM Zn)生长受到抑制。虽然 ubiF 突变体保留了结瘤苜蓿和菜豆的能力,但它无法与 R. favelukesii LPU83 野生型菌株竞争在 Medicago sativa 和 P. vulgaris 中的结瘤,这表明 ubiF 对竞争力很重要。在这里,我们首次报道 ubiF 同源物对于根瘤菌的结瘤竞争力和对特定胁迫的耐受性是必需的。