Suppr超能文献

ubiF 参与了促生菌 Rhizobium favelukesii LPU83 的耐酸性和共生竞争力。

ubiF is involved in acid stress tolerance and symbiotic competitiveness in Rhizobium favelukesii LPU83.

机构信息

Instituto de Biotecnología y Biología Molecular (IBBM, CCT-CONICET-La Plata), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 115 49 y 50 (1900), Buenos Aires, La Plata, Argentina.

出版信息

Braz J Microbiol. 2022 Sep;53(3):1633-1643. doi: 10.1007/s42770-022-00780-8. Epub 2022 Jun 15.

Abstract

The acidity of soils significantly reduces the productivity of legumes mainly because of the detrimental effects of hydrogen ions on the legume plants, leading to the establishment of an inefficient symbiosis and poor biological nitrogen fixation. We recently reported the analysis of the fully sequenced genome of Rhizobium favelukesii LPU83, an alfalfa-nodulating rhizobium with a remarkable ability to grow, nodulate and compete in acidic conditions. To gain more insight into the genetic mechanisms leading to acid tolerance in R. favelukesii LPU83, we constructed a transposon mutant library and screened for mutants displaying a more acid-sensitive phenotype than the parental strain. We identified mutant Tn833 carrying a single-transposon insertion within LPU83_2531, an uncharacterized short ORF located immediately upstream from ubiF homolog. This gene encodes a protein with an enzymatic activity involved in the biosynthesis of ubiquinone. As the transposon was inserted near the 3' end of LPU83_2531 and these genes are cotranscribed as a part of the same operon, we hypothesized that the phenotype in Tn833 is most likely due to a polar effect on ubiF transcription.We found that a mutant in ubiF was impaired to grow at low pH and other abiotic stresses including 5 mM ascorbate and 0.500 mM Zn. Although the ubiF mutant retained the ability to nodulate alfalfa and Phaseolus vulgaris, it was unable to compete with the R. favelukesii LPU83 wild-type strain for nodulation in Medicago sativa and P. vulgaris, suggesting that ubiF is important for competitiveness. Here, we report for the first time an ubiF homolog being essential for nodulation competitiveness and tolerance to specific stresses in rhizobia.

摘要

土壤的酸度会显著降低豆科植物的生产力,主要是因为氢离子对豆科植物有不利影响,导致低效共生和生物固氮不良。我们最近报道了苜蓿根瘤菌 Rhizobium favelukesii LPU83 全序列基因组的分析,该菌具有在酸性条件下生长、结瘤和竞争的显著能力,是一种苜蓿根瘤菌。为了更深入地了解导致 R. favelukesii LPU83 耐酸的遗传机制,我们构建了转座子突变体文库,并筛选出比亲本菌株表现出更敏感表型的突变体。我们发现携带单个转座子插入的突变体 Tn833,插入到 LPU83_2531 内,这是一个未被描述的短 ORF,位于 ubiF 同源物的上游。该基因编码一种具有参与泛醌生物合成的酶活性的蛋白质。由于转座子插入到 LPU83_2531 的 3'端,并且这些基因作为同一个操纵子的一部分转录,我们假设 Tn833 中的表型很可能是由于 ubiF 转录的极性效应。我们发现 ubiF 突变体在低 pH 和其他非生物胁迫下(包括 5mM 抗坏血酸和 0.500mM Zn)生长受到抑制。虽然 ubiF 突变体保留了结瘤苜蓿和菜豆的能力,但它无法与 R. favelukesii LPU83 野生型菌株竞争在 Medicago sativa 和 P. vulgaris 中的结瘤,这表明 ubiF 对竞争力很重要。在这里,我们首次报道 ubiF 同源物对于根瘤菌的结瘤竞争力和对特定胁迫的耐受性是必需的。

相似文献

1
ubiF is involved in acid stress tolerance and symbiotic competitiveness in Rhizobium favelukesii LPU83.
Braz J Microbiol. 2022 Sep;53(3):1633-1643. doi: 10.1007/s42770-022-00780-8. Epub 2022 Jun 15.
2
Exopolysaccharide Characterization of LPU83 and Its Role in the Symbiosis With Alfalfa.
Front Plant Sci. 2021 Feb 10;12:642576. doi: 10.3389/fpls.2021.642576. eCollection 2021.
4
Proteomic Analysis of LPU83 in Response to Acid Stress.
J Proteome Res. 2019 Oct 4;18(10):3615-3629. doi: 10.1021/acs.jproteome.9b00275. Epub 2019 Sep 5.
5
Global transcriptome analysis of Rhizobium favelukesii LPU83 in response to acid stress.
FEMS Microbiol Ecol. 2020 Dec 30;97(1). doi: 10.1093/femsec/fiaa235.
9
Genome sequence of the acid-tolerant strain Rhizobium sp. LPU83.
J Biotechnol. 2014 Apr 20;176:40-1. doi: 10.1016/j.jbiotec.2014.02.008. Epub 2014 Feb 17.
10
Characterization of extrachromosomal replicons present in the extended host range Rhizobium sp. LPU83.
Plasmid. 2010 Nov;64(3):177-85. doi: 10.1016/j.plasmid.2010.07.004. Epub 2010 Jul 17.

引用本文的文献

1
Bacterial persisters: molecular mechanisms and therapeutic development.
Signal Transduct Target Ther. 2024 Jul 17;9(1):174. doi: 10.1038/s41392-024-01866-5.

本文引用的文献

1
Exopolysaccharide Characterization of LPU83 and Its Role in the Symbiosis With Alfalfa.
Front Plant Sci. 2021 Feb 10;12:642576. doi: 10.3389/fpls.2021.642576. eCollection 2021.
2
The two-component system ActJK is involved in acid stress tolerance and symbiosis in Sinorhizobium meliloti.
J Biotechnol. 2021 Mar 10;329:80-91. doi: 10.1016/j.jbiotec.2021.01.006. Epub 2021 Feb 2.
3
Global transcriptome analysis of Rhizobium favelukesii LPU83 in response to acid stress.
FEMS Microbiol Ecol. 2020 Dec 30;97(1). doi: 10.1093/femsec/fiaa235.
4
Microbial response to acid stress: mechanisms and applications.
Appl Microbiol Biotechnol. 2020 Jan;104(1):51-65. doi: 10.1007/s00253-019-10226-1. Epub 2019 Nov 26.
5
Exopolysaccharide production in Ensifer meliloti laboratory and native strains and their effects on alfalfa inoculation.
Arch Microbiol. 2020 Mar;202(2):391-398. doi: 10.1007/s00203-019-01756-3. Epub 2019 Nov 3.
6
Proteomic Analysis of LPU83 in Response to Acid Stress.
J Proteome Res. 2019 Oct 4;18(10):3615-3629. doi: 10.1021/acs.jproteome.9b00275. Epub 2019 Sep 5.
7
Dissecting the Acid Stress Response of CIAT 899.
Front Microbiol. 2018 Apr 30;9:846. doi: 10.3389/fmicb.2018.00846. eCollection 2018.
8
Succinoglycan Production Contributes to Acidic pH Tolerance in Sinorhizobium meliloti Rm1021.
Mol Plant Microbe Interact. 2017 Dec;30(12):1009-1019. doi: 10.1094/MPMI-07-17-0176-R. Epub 2017 Oct 18.
9
Rhizobium favelukesii sp. nov., isolated from the root nodules of alfalfa (Medicago sativa L).
Int J Syst Evol Microbiol. 2016 Nov;66(11):4451-4457. doi: 10.1099/ijsem.0.001373. Epub 2016 Aug 3.
10
Biosynthesis and physiology of coenzyme Q in bacteria.
Biochim Biophys Acta. 2014 Jul;1837(7):1004-11. doi: 10.1016/j.bbabio.2014.01.015. Epub 2014 Jan 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验