IEEE J Biomed Health Inform. 2022 Sep;26(9):4743-4750. doi: 10.1109/JBHI.2022.3182581. Epub 2022 Sep 9.
Artificial pancreas (AP) algorithms can be divided into single-hormone (SH) and dual-hormone (DH). SH algorithms regulate glycemia using insulin as their control input. On the other hand, DH algorithms also use glucagon to counteract insulin. While SH-AP systems are already commercially available, DH-AP systems are still in an earlier research phase. DH-AP systems have been questioned since the added complexity of glucagon infusion does not always guarantee hypoglycemia prevention and might significantly raise insulin delivery. In this work, a DH multicontroller is proposed based on a SH linear quadratic gaussian (LQG) algorithm with an additional LQG controller to deliver glucagon. This strategy has a switched structure that allows activating one of the following three controllers when necessary: a conservative insulin LQG controller to modulate basal delivery ( K), an aggressive insulin LQG controller to counteract meals ( K), or a glucagon LQG controller to avoid imminent hypoglycemia ( K). Here, an in silico study of the benefits of incorporating controller K is carried out. Intra-patient variability and mixed meals are considered. Results indicate that the proposed switched, dual-hormone strategy yields to a reduction in hypoglycemia without increasing hyperglycemia, with no significant rise in insulin delivery.
人工胰腺 (AP) 算法可分为单激素 (SH) 和双激素 (DH)。SH 算法通过胰岛素作为控制输入来调节血糖。另一方面,DH 算法还使用胰高血糖素来对抗胰岛素。虽然 SH-AP 系统已经商业化,但 DH-AP 系统仍处于早期研究阶段。由于胰高血糖素输注的复杂性增加并不总能保证预防低血糖,并且可能会显著增加胰岛素的输送,因此对 DH-AP 系统提出了质疑。在这项工作中,提出了一种基于 SH 线性二次高斯 (LQG) 算法的 DH 多控制器,该算法增加了一个额外的 LQG 控制器来输送胰高血糖素。该策略具有切换结构,允许在必要时激活以下三个控制器之一:调节基础输送的保守胰岛素 LQG 控制器 ( K)、用于对抗膳食的激进胰岛素 LQG 控制器 ( K) 或避免即将发生的低血糖的胰高血糖素 LQG 控制器 ( K)。在这里,对包含控制器 K 的好处进行了计算机模拟研究。考虑了患者内变异性和混合膳食。结果表明,所提出的切换、双激素策略可降低低血糖而不增加高血糖,且胰岛素输送无显著增加。