Xiao Yuguo, Guo Jinyan, Dong Zhaobin, Richardson Annis, Patterson Erin, Mangrum Sidney, Bybee Seth, Bertolini Edoardo, Bartlett Madelaine, Chuck George, Eveland Andrea L, Scanlon Michael J, Whipple Clinton
Department of Biology, Brigham Young University, 4102 LSB, Provo, UT 84602, USA.
Donald Danforth Plant Science Center, St. Louis, MO 63132, USA.
Sci Adv. 2022 Jun 17;8(24):eabm6835. doi: 10.1126/sciadv.abm6835. Epub 2022 Jun 15.
Grass inflorescence development is diverse and complex and involves sophisticated but poorly understood interactions of genes regulating branch determinacy and leaf growth. Here, we use a combination of transcript profiling and genetic and phylogenetic analyses to investigate () and , two maize genes that simultaneously suppress inflorescence leaf growth and promote branching. We identify a regulatory network of inflorescence leaf suppression that involves the phase change gene upstream of and the ligule identity gene (). We also find that a series of duplications in the gene lineage facilitated its shift from boundary domain in nongrasses to suppressed inflorescence leaves of grasses. Collectively, these results suggest that the boundary domain genes and were recruited to inflorescence leaves where they suppress growth and regulate a nonautonomous signaling center that promotes inflorescence branching, an important component of yield in cereal grasses.
禾本科植物的花序发育多样且复杂,涉及调控分枝确定性和叶片生长的基因之间复杂但了解甚少的相互作用。在此,我们结合转录谱分析、遗传学和系统发育分析,研究了两个玉米基因()和(),它们同时抑制花序叶片生长并促进分枝。我们鉴定出一个花序叶片抑制调控网络,该网络涉及位于()上游的相变基因()和叶舌身份基因()。我们还发现,()基因谱系中的一系列重复促进了其从非禾本科植物的边界结构域向禾本科植物受抑制的花序叶片的转变。总体而言,这些结果表明,边界结构域基因()和()被招募到花序叶片中,在那里它们抑制生长并调节一个促进花序分枝的非自主信号中心,而花序分枝是禾本科作物产量的一个重要组成部分。