Esmeryan Karekin D, Fedchenko Yulian I, Gyoshev Stanislav D, Lazarov Yuliyan, Chaushev Todor A, Grakov Teodor
Acoustoelectronics Laboratory, Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72, Tzarigradsko Chaussee Blvd., 1784 Sofia, Bulgaria.
Department of Distributed Information and Control Systems, Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Bl.2, 1113 Sofia, Bulgaria.
ACS Appl Bio Mater. 2022 Jul 18;5(7):3519-3529. doi: 10.1021/acsabm.2c00457. Epub 2022 Jun 15.
Nowadays, the tremendous progress of nanotechnologies and materials science facilitates the fabrication of universal and multifunctional superhydrophobic surfaces on a large scale. Yet, integrating icephobic and anti-bioadhesive properties in an individual water-repellent functional coating, for addressing the difficulties faced by cryobiologists, aircraft, and seacraft manufacturers, is quite tricky but feasible if using nonpolar soot nanoparticles, whose fragility, however, impedes their industrial applicability. Here, we advance the current state-of-the-art to an extent, permitting the introduction of economically affordable and ultradurable non-wettable soot-based coatings. The deposition of rapeseed oil soot, cyanoacrylate glue and fluorine compounds onto different fabrics confers the latter with superior tolerance to harsh mechanical and thermal interventions [e.g., scratching, blade scraping, liquid nitrogen immersion ( ∼ -196 °C), torsion and water jetting], while in the meantime retaining water repellency and oleophobicity. The as-prepared soot fabrics can stick continuously to the selected host surface and favor the recovery of ∼60% of the initial motility of human spermatozoa subjected to cryopreservation or being detached and utilized as standalone non-wettable membranes. Our invention may be considered as the first fundamental stage of safely (without any health concerns) transferring the soot in reproductive medicine and developing enhanced cryogenic and antibacterial medical devices.
如今,纳米技术和材料科学的巨大进步推动了通用多功能超疏水表面的大规模制造。然而,要在单一的疏水功能涂层中整合疏冰和抗生物粘附特性,以解决低温生物学家、飞机和船舶制造商所面临的难题,这颇具挑战性,但如果使用非极性碳黑纳米颗粒则是可行的,不过其易碎性阻碍了它们在工业上的应用。在此,我们在一定程度上推动了当前的技术水平,使得能够引入经济实惠且超耐用的不可湿润碳黑基涂层。将菜籽油碳黑、氰基丙烯酸酯胶水和氟化合物沉积到不同织物上,赋予后者对苛刻机械和热干预(如刮擦、刀片刮削、液氮浸泡(约 -196 °C)、扭转和喷水)的卓越耐受性,同时保持拒水性和疏油性。所制备的碳黑织物能够持续粘附在选定的主体表面上,并且有利于在冷冻保存后恢复约60%的人类精子初始活力,或者作为独立的不可湿润膜被分离和使用。我们的发明可被视为在生殖医学中安全(无任何健康问题)转移碳黑以及开发增强型低温和抗菌医疗设备的首个基础阶段。