Suppr超能文献

单摆的机器学习潜力。

Machine-learning potential of a single pendulum.

作者信息

Mandal Swarnendu, Sinha Sudeshna, Shrimali Manish Dev

机构信息

Central University of Rajasthan, Ajmer, Rajasthan, India 305817.

Indian Institute of Science Education and Research Mohali, Punjab, India 140306.

出版信息

Phys Rev E. 2022 May;105(5-1):054203. doi: 10.1103/PhysRevE.105.054203.

Abstract

Reservoir computing offers a great computational framework where a physical system can directly be used as computational substrate. Typically a "reservoir" is comprised of a large number of dynamical systems, and is consequently high dimensional. In this work, we use just a single simple low-dimensional dynamical system, namely, a driven pendulum, as a potential reservoir to implement reservoir computing. Remarkably we demonstrate, through numerical simulations as well as a proof-of-principle experimental realization, that one can successfully perform learning tasks using this single system. The underlying idea is to utilize the rich intrinsic dynamical patterns of the driven pendulum, especially the transient dynamics which has so far been an untapped resource. This allows even a single system to serve as a suitable candidate for a reservoir. Specifically, we analyze the performance of the single pendulum reservoir for two classes of tasks: temporal and nontemporal data processing. The accuracy and robustness of the performance exhibited by this minimal one-node reservoir in implementing these tasks strongly suggest an alternative direction in designing the reservoir layer from the point of view of efficient applications. Further, the simplicity of our learning system offers an opportunity to better understand the framework of reservoir computing in general and indicates the remarkable machine-learning potential of even a single simple nonlinear system.

摘要

储层计算提供了一个强大的计算框架,其中物理系统可直接用作计算基板。通常,一个“储层”由大量动态系统组成,因此是高维的。在这项工作中,我们仅使用一个简单的低维动态系统,即受驱摆,作为一个潜在的储层来实现储层计算。值得注意的是,我们通过数值模拟以及原理验证实验实现证明,使用这个单一系统可以成功执行学习任务。其基本思想是利用受驱摆丰富的固有动态模式,特别是迄今为止尚未开发的瞬态动力学。这使得即使是单个系统也能成为储层的合适候选者。具体而言,我们分析了单摆储层在两类任务中的性能:时间和非时间数据处理。这个最小的单节点储层在执行这些任务时所展现出的性能准确性和鲁棒性,从高效应用的角度为储层层的设计强烈暗示了一个替代方向。此外,我们学习系统的简单性为更全面地理解储层计算框架提供了契机,并表明即使是单个简单的非线性系统也具有显著的机器学习潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验