Ownuk Jamil, Baghishani Hossein, Nezakati Ahmad
Department of Statistics, Faculty of Mathematical Sciences, Shahrood University of Technology, Shahrood, Iran.
J Appl Stat. 2020 Mar 10;48(4):646-668. doi: 10.1080/02664763.2020.1738360. eCollection 2021.
While there has been considerable research on the analysis of extreme values and outliers by using heavy-tailed distributions, little is known about the semi-heavy-tailed behaviors of data when there are a few suspicious outliers. To address the situation where data are skewed possessing semi-heavy tails, we introduce two new skewed distribution families of the hyperbolic secant with exciting properties. We extend the semi-heavy-tailedness property of data to a linear regression model. In particular, we investigate the asymptotic properties of the ML estimators of the regression parameters when the error term has a semi-heavy-tailed distribution. We conduct simulation studies comparing the ML estimators of the regression parameters under various assumptions for the distribution of the error term. We also provide three real examples to show the priority of the semi-heavy-tailedness of the error term comparing to heavy-tailedness. Online supplementary materials for this article are available. All the new proposed models in this work are implemented by the shs R package, which can be found on the GitHub webpage.
虽然已经有大量关于使用重尾分布分析极值和异常值的研究,但对于存在一些可疑异常值时数据的半重尾行为却知之甚少。为了解决数据具有偏态且拥有半重尾的情况,我们引入了两个具有令人兴奋特性的双曲正割新偏态分布族。我们将数据的半重尾特性扩展到线性回归模型。特别地,当误差项具有半重尾分布时,我们研究回归参数极大似然估计量的渐近性质。我们进行了模拟研究,比较在误差项分布的各种假设下回归参数的极大似然估计量。我们还提供了三个实际例子,以展示误差项半重尾性相对于重尾性的优势。本文提供在线补充材料。这项工作中所有新提出的模型都由shs R包实现,该包可在GitHub网页上找到。