da Silva Ferreira Clécio, Lachos Víctor H, Garay Aldo M
Department of Statistics, Federal University of Juiz de Fora, Juiz de Fora, Brazil.
Department of Statistics, University of Connecticut, Storrs, CT, USA.
J Appl Stat. 2019 Nov 11;47(9):1690-1719. doi: 10.1080/02664763.2019.1691158. eCollection 2020.
The heteroscedastic nonlinear regression model (HNLM) is an important tool in data modeling. In this paper we propose a HNLM considering skew scale mixtures of normal (SSMN) distributions, which allows fitting asymmetric and heavy-tailed data simultaneously. Maximum likelihood (ML) estimation is performed via the expectation-maximization (EM) algorithm. The observed information matrix is derived analytically to account for standard errors. In addition, diagnostic analysis is developed using case-deletion measures and the local influence approach. A simulation study is developed to verify the empirical distribution of the likelihood ratio statistic, the power of the homogeneity of variances test and a study for misspecification of the structure function. The method proposed is also illustrated by analyzing a real dataset.
异方差非线性回归模型(HNLM)是数据建模中的一个重要工具。在本文中,我们提出了一种考虑正态分布的偏斜尺度混合(SSMN)的HNLM,它能够同时拟合不对称和重尾数据。通过期望最大化(EM)算法进行最大似然(ML)估计。通过解析推导得到观测信息矩阵以计算标准误差。此外,使用案例删除度量和局部影响方法进行诊断分析。开展了一项模拟研究,以验证似然比统计量的经验分布、方差齐性检验的功效以及结构函数误设的研究。通过分析一个真实数据集来说明所提出的方法。