Suppr超能文献

具有随机初始条件的临界生死过程诱导的模型。

Models induced from critical birth-death process with random initial conditions.

作者信息

Tchorbadjieff A, Mayster P

机构信息

Institute of Mathematics and Informatics, Bulgarian Academy of Science, Sofia, Bulgaria.

出版信息

J Appl Stat. 2020 Feb 25;47(13-15):2862-2878. doi: 10.1080/02664763.2020.1732309. eCollection 2020.

Abstract

In this work, we study a linear birth-death process starting from random initial conditions. First, we consider these initial conditions as a random number of particles following different standard probabilistic distributions - Negative-Binomial and its closest Geometric, Poisson or Pólya-Aeppli distributions. It is proved analytically and numerically that in these cases the random number of particles alive at any positive time follows the same probability law like the initial condition, but with different parameters depending on time. The random initial conditions cannot change the critical parameter of branching mechanism, but they impact the extinction probability. Finally, the numerical model is extended to an application for studying branching processes with more complex initial conditions. This is demonstrated with a linear birth-death process initialised with Pólya urn sampling scheme. The obtained preliminary results for particle distribution show close relation to Pólya-Aeppli distribution.

摘要

在这项工作中,我们研究了从随机初始条件开始的线性生死过程。首先,我们将这些初始条件视为遵循不同标准概率分布的随机粒子数——负二项分布及其最接近的几何分布、泊松分布或波利亚 - 埃普利分布。通过解析和数值证明,在这些情况下,任何正时间存活的随机粒子数遵循与初始条件相同的概率定律,但参数随时间变化。随机初始条件不会改变分支机制的临界参数,但会影响灭绝概率。最后,将数值模型扩展到用于研究具有更复杂初始条件的分支过程的应用中。这通过用波利亚瓮抽样方案初始化的线性生死过程进行了演示。所获得的粒子分布初步结果显示与波利亚 - 埃普利分布密切相关。

相似文献

1
Models induced from critical birth-death process with random initial conditions.
J Appl Stat. 2020 Feb 25;47(13-15):2862-2878. doi: 10.1080/02664763.2020.1732309. eCollection 2020.
2
From the multiterm urn model to the self-exciting negative binomial distribution and Hawkes processes.
Phys Rev E. 2022 Sep;106(3-1):034106. doi: 10.1103/PhysRevE.106.034106.
3
Discrete stochastic metapopulation model with arbitrarily distributed infectious period.
Math Biosci. 2015 Mar;261:74-82. doi: 10.1016/j.mbs.2014.12.003. Epub 2014 Dec 27.
4
Critical branching-annihilating random walk of two species.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Feb;63(2 Pt 1):021113. doi: 10.1103/PhysRevE.63.021113. Epub 2001 Jan 26.
5
Iterated birth and death process as a model of radiation cell survival.
Math Biosci. 2001 Jan;169(1):89-107. doi: 10.1016/s0025-5564(00)00054-7.
6
Partition structures, Polya urns, the Ewens sampling formula, and the ages of alleles.
Theor Popul Biol. 1986 Oct;30(2):271-88. doi: 10.1016/0040-5809(86)90037-7.
7
The sampling theory of neutral alleles and an urn model in population genetics.
J Math Biol. 1987;25(2):123-59. doi: 10.1007/BF00276386.
8
Image segmentation and labeling using the Polya urn model.
IEEE Trans Image Process. 1999;8(9):1243-53. doi: 10.1109/83.784436.
10
The coalescent of a sample from a binary branching process.
Theor Popul Biol. 2018 Jul;122:30-35. doi: 10.1016/j.tpb.2018.04.005. Epub 2018 Apr 25.

引用本文的文献

1
On regime changes of COVID-19 outbreak.
J Appl Stat. 2023 Feb 13;50(11-12):2343-2359. doi: 10.1080/02664763.2023.2177625. eCollection 2023.
2
Editorial to special issue V WCDANM 2018.
J Appl Stat. 2020 Sep 14;47(13-15):2289-2298. doi: 10.1080/02664763.2020.1818489. eCollection 2020.

本文引用的文献

1
The mathematics of cancer: integrating quantitative models.
Nat Rev Cancer. 2015 Dec;15(12):730-45. doi: 10.1038/nrc4029.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验