Suppr超能文献

基于连接函数的马尔可夫零膨胀计数时间序列模型及其应用

Copula-based Markov zero-inflated count time series models with application.

作者信息

Alqawba Mohammed, Diawara Norou

机构信息

Department of Mathematics, College of Sciences and Arts, Qassim University, Al Rass, Saudi Arabia.

Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA, USA.

出版信息

J Appl Stat. 2020 Apr 3;48(5):786-803. doi: 10.1080/02664763.2020.1748581. eCollection 2021.

Abstract

Count time series data with excess zeros are observed in several applied disciplines. When these zero-inflated counts are sequentially recorded, they might result in serial dependence. Ignoring the zero-inflation and the serial dependence might produce inaccurate results. In this paper, Markov zero-inflated count time series models based on a joint distribution on consecutive observations are proposed. The joint distribution function of the consecutive observations is constructed through copula functions. First- and second-order Markov chains are considered with the univariate margins of zero-inflated Poisson (ZIP), zero-inflated negative binomial (ZINB), or zero-inflated Conway-Maxwell-Poisson (ZICMP) distributions. Under the Markov models, bivariate copula functions such as the bivariate Gaussian, Frank, and Gumbel are chosen to construct a bivariate distribution of two consecutive observations. Moreover, the trivariate Gaussian and max-infinitely divisible copula functions are considered to build the joint distribution of three consecutive observations. Likelihood-based inference is performed and asymptotic properties are studied. To evaluate the estimation method and the asymptotic results, simulated examples are studied. The proposed class of models are applied to sandstorm counts example. The results suggest that the proposed models have some advantages over some of the models in the literature for modeling zero-inflated count time series data.

摘要

在多个应用学科中都观察到了具有过多零值的计数时间序列数据。当这些零膨胀计数被顺序记录时,可能会导致序列相关性。忽略零膨胀和序列相关性可能会产生不准确的结果。本文提出了基于连续观测联合分布的马尔可夫零膨胀计数时间序列模型。连续观测的联合分布函数通过Copula函数构建。考虑一阶和二阶马尔可夫链,其单变量边缘分布为零膨胀泊松(ZIP)、零膨胀负二项式(ZINB)或零膨胀康威 - 麦克斯韦 - 泊松(ZICMP)分布。在马尔可夫模型下,选择双变量Copula函数,如双变量高斯、弗兰克和冈贝尔函数,来构建两个连续观测的双变量分布。此外,考虑三变量高斯和最大无限可分Copula函数来构建三个连续观测的联合分布。进行基于似然的推断并研究渐近性质。为了评估估计方法和渐近结果,研究了模拟示例。所提出的模型类应用于沙尘暴计数示例。结果表明,所提出的模型在对零膨胀计数时间序列数据建模方面比文献中的一些模型具有一些优势。

相似文献

7
Distribution-free Inference of Zero-inated Binomial Data for Longitudinal Studies.纵向研究中零膨胀二项式数据的无分布推断
J Appl Stat. 2015 Oct 1;42(10):2203-2219. doi: 10.1080/02664763.2015.1023270. Epub 2015 Mar 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验