Suppr超能文献

用于微生物系统发育树关联的变分贝叶斯推理

Variational Bayesian inference for association over phylogenetic trees for microorganisms.

作者信息

Hao Xiaojuan, Eskridge Kent M, Wang Dong

机构信息

Department of Statistics, University of Nebraska, Lincoln, NE, USA.

Division of Bioinformatics and Biostatistics, FDA National Center for Toxicological Research, Jefferson, AR, USA.

出版信息

J Appl Stat. 2020 Nov 30;49(5):1140-1153. doi: 10.1080/02664763.2020.1854200. eCollection 2022.

Abstract

With the advance of next generation sequencing technologies, researchers now routinely obtain a collection of microbial sequences with complex phylogenetic relationships. It is often of interest to analyze the association between certain environmental factors and characteristics of the microbial collection. Though methods have been developed to test for association between the microbial composition with environmental factors as well as between coevolving traits, a flexible model that can provide a comprehensive picture of the relationship between microbial community characteristics and environmental variables will be tremendously beneficial. We developed a Bayesian approach for association analysis while incorporating the phylogenetic structure to account for the dependence between observations. To overcome the computational difficulty related to the phylogenetic tree, a variational algorithm was developed to evaluate the posterior distribution. As the posterior distribution can be readily obtained for parameters of interest and any derived variables, the association relationship can be examined comprehensively. With two application examples, we demonstrated that the Bayesian approach can uncover nuanced details of the microbial assemblage with regard to the environmental factor. The proposed Bayesian approach and variational algorithm can be extended for other problems involving dependence over tree-like structures.

摘要

随着下一代测序技术的发展,研究人员现在经常获得一组具有复杂系统发育关系的微生物序列。分析某些环境因素与微生物集合特征之间的关联通常很有意义。尽管已经开发出方法来测试微生物组成与环境因素之间以及共同进化特征之间的关联,但一个能够全面描述微生物群落特征与环境变量之间关系的灵活模型将非常有益。我们开发了一种贝叶斯关联分析方法,同时纳入系统发育结构以考虑观测值之间的依赖性。为了克服与系统发育树相关的计算困难,开发了一种变分算法来评估后验分布。由于可以很容易地获得感兴趣参数和任何派生变量的后验分布,因此可以全面检查关联关系。通过两个应用示例,我们证明了贝叶斯方法可以揭示微生物群落关于环境因素的细微细节。所提出的贝叶斯方法和变分算法可以扩展到其他涉及树状结构依赖性的问题。

相似文献

5

本文引用的文献

2
Microbiome: Focus on Causation and Mechanism.微生物组:关注因果关系和机制。
Cell. 2018 Aug 9;174(4):785-790. doi: 10.1016/j.cell.2018.07.038.
3
Conducting metagenomic studies in microbiology and clinical research.在微生物学和临床研究中进行宏基因组学研究。
Appl Microbiol Biotechnol. 2018 Oct;102(20):8629-8646. doi: 10.1007/s00253-018-9209-9. Epub 2018 Aug 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验