Suppr超能文献

对脑脊液的代谢组学分析揭示了一种用于急性淋巴细胞白血病中枢神经系统受累的早期诊断模型。

Metabolomic profiling of cerebrospinal fluid reveals an early diagnostic model for central nervous system involvement in acute lymphoblastic leukaemia.

机构信息

School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China.

Institute of Hematology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China.

出版信息

Br J Haematol. 2022 Sep;198(6):994-1010. doi: 10.1111/bjh.18307. Epub 2022 Jun 16.

Abstract

The pathogenesis of central nervous system involvement (CNSI) in patients with acute lymphoblastic leukaemia (ALL) remains unclear and a robust biomarker of early diagnosis is missing. An untargeted cerebrospinal fluid (CSF) metabolomics analysis was performed to identify independent risk biomarkers that could diagnose CNSI at the early stage. Thirty-three significantly altered metabolites between ALL patients with and without CNSI were identified, and a CNSI evaluation score (CES) was constructed to predict the risk of CNSI based on three independent risk factors (8-hydroxyguanosine, l-phenylalanine and hypoxanthine). This predictive model could diagnose CNSI with positive prediction values of 95.9% and 85.6% in the training and validation sets respectively. Moreover, CES score increased with the elevated level of central nervous system (CNSI) involvement. In addition, we validated this model by tracking the changes in CES at different stages of CNSI, including before CNSI and during CNSI, and in remission after CNSI. The CES showed good ability to predict the progress of CNSI. Finally, we constructed a nomogram to predict the risk of CNSI in clinical practice, which performed well compared with observed probability. This unique CSF metabolomics study may help us understand the pathogenesis of CNSI, diagnose CNSI at the early stage, and sequentially achieve personalized precision treatment.

摘要

中枢神经系统受累(CNSI)在急性淋巴细胞白血病(ALL)患者中的发病机制仍不清楚,缺乏早期诊断的强有力生物标志物。本研究采用非靶向性脑脊液(CSF)代谢组学分析,旨在确定可早期诊断 CNSI 的独立风险生物标志物。在 ALL 伴或不伴 CNSI 的患者中鉴定出 33 个差异代谢物,基于 3 个独立风险因素(8-羟基鸟嘌呤、L-苯丙氨酸和次黄嘌呤)构建了 CNSI 评估评分(CES),用于预测 CNSI 的风险。该预测模型在训练集和验证集中对 CNSI 的阳性预测值分别为 95.9%和 85.6%。此外,CES 评分随中枢神经系统(CNS)受累程度的升高而增加。另外,我们通过跟踪 CES 在 CNSI 的不同阶段(包括 CNSI 之前、期间和 CNSI 后缓解期)的变化来验证该模型。CES 显示出很好的预测 CNSI 进展的能力。最后,我们构建了一个列线图,用于预测临床实践中 CNSI 的风险,与观察概率相比,该列线图表现良好。这项独特的 CSF 代谢组学研究可能有助于我们了解 CNSI 的发病机制,早期诊断 CNSI,并实现个性化精准治疗。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验