School of Marine Science and Technology, Northwestern Polytechnical University XiAn, Shaanxi, China.
Faculty of Electrical and Electronic Engineering, University Tun Hussein Onn Malaysia, Batu Pahat, Malaysia.
PLoS One. 2022 Jun 16;17(6):e0268786. doi: 10.1371/journal.pone.0268786. eCollection 2022.
SONAR signal processing plays an indispensable role when it comes to parameter estimation of Direction of Arrival (DOA) of acoustic plane waves for closely spaced target exclusively under severe noisy environments. Resolution performance of classical MUSIC and ESPRIT algorithms and other subspace-based algorithms decreases under scenarios like low SNR, smaller number of snapshots and closely spaced targets. In this study, optimization strength of swarm intelligence of Cuckoo Search Algorithm (CSA) is accomplished for viable DOA estimation in different scenarios of underwater environment using a Uniform Linear Array (ULA). Higher resolution for closely spaced targets is achieved using smaller number of snapshots viably with CSA by investigating global minima of the highly nonlinear cost function of ULA. Performance analysis of CSA for different number of targets employing estimation accuracy, higher resolution, variance analysis, frequency distribution of RMSE over the monte Carlo runs and robustness against noise in the presence of additive-white Gaussian measurement noise is achieved. Comparative studies of CSA with Root MUSIC and ESPRIT along with Crammer Rao Bound analysis witnesses better results for estimating DOA parameters which are further endorsed from the results of Monte Carlo simulations.
当涉及到在强噪声环境下对声平面波的到达方向(DOA)的参数估计时,声纳信号处理在仅对近距离目标的情况下起着不可或缺的作用。在低 SNR、较少的快拍数和近距离目标等情况下,经典 MUSIC 和 ESPRIT 算法以及其他基于子空间的算法的分辨率性能会下降。在这项研究中,使用均匀线性阵列(ULA),通过研究 ULA 高度非线性代价函数的全局最小值,完成了布谷鸟搜索算法(CSA)的群体智能优化强度,以在不同的水下环境场景中进行可行的 DOA 估计。通过使用 CSA 在较小的快拍数下实现了对近距离目标的更高分辨率,这是可行的。通过对不同数量的目标进行 CSA 的估计准确性、更高的分辨率、方差分析、RMSE 的频率分布以及在存在加性白高斯测量噪声的情况下对噪声的鲁棒性进行了性能分析。与根 MUSIC 和 ESPRIT 进行的 CSA 比较研究以及 Crammer Rao 边界分析见证了用于估计 DOA 参数的更好结果,这些结果进一步得到了蒙特卡罗模拟结果的支持。