Suppr超能文献

一种单快拍方向估计的协方差矩阵重构方法。

A Covariance Matrix Reconstruction Approach for Single Snapshot Direction of Arrival Estimation.

机构信息

James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK.

Research and Development Department, RFNet Technologies Pte Ltd., Singapore 319319, Singapore.

出版信息

Sensors (Basel). 2022 Apr 18;22(8):3096. doi: 10.3390/s22083096.

Abstract

Achieving accurate single snapshot direction of arrival (DOA) information significantly improves communication performance. This paper investigates an accurate and high-resolution DOA estimation technique by enabling single snapshot data collection and enhancing DOA estimation results compared to multiple snapshot methods. This is carried out by manipulating the incoming signal covariance matrix while suppressing undesired additive white Gaussian noise (AWGN) by actively updating and estimating the antenna array manifold vector. We demonstrated the estimation performance in simulation that our proposed technique supersedes the estimation performance of existing state-of-the-art techniques in various signal-to-noise ratio (SNR) scenarios and single snapshot sampling environments. Our proposed covariance-based single snapshot (CbSS) technique yields the lowest root-mean-squared error (RMSE) against the true DOA compared to root-MUSIC and the partial relaxation (PR) approach for multiple snapshots and a single signal source environment. In addition, our proposed technique presents the lowest DOA estimation performance degradation in a multiple uncorrelated and coherent signal source environment by up to 25.5% with nearly negligible bias. Lastly, our proposed CbSS technique presents the best DOA estimation results for a single snapshot and single-source scenario with an RMSE of 0.05° against the true DOA compared to root-MUSIC and the PR approach with nearly negligible bias as well. A potential application for CbSS would be in a scenario where accurate DOA estimation with a small antenna array form factor is a limitation, such as in the intelligent transportation system industry and wireless communication.

摘要

实现准确的单次快照到达方向(DOA)信息可以显著提高通信性能。本文研究了一种准确和高分辨率的 DOA 估计技术,通过允许单快照数据收集并增强 DOA 估计结果,与多快照方法相比。这是通过操纵输入信号协方差矩阵来实现的,同时通过主动更新和估计天线阵列流形向量来抑制不需要的附加白高斯噪声(AWGN)。我们在仿真中演示了我们提出的技术的估计性能,该技术在各种信噪比(SNR)场景和单快照采样环境下优于现有的最先进技术的估计性能。与多快照和单信号源环境下的根-MUSIC 和部分松弛(PR)方法相比,我们提出的基于协方差的单快照(CbSS)技术在与真实 DOA 相比时产生了最低的均方根误差(RMSE)。此外,在多不相关和相干信号源环境中,我们提出的技术在 DOA 估计性能下降方面的表现最佳,下降幅度高达 25.5%,几乎没有偏差。最后,与根-MUSIC 和 PR 方法相比,我们提出的 CbSS 技术在单快照和单源场景下的 DOA 估计结果最佳,与真实 DOA 相比的 RMSE 为 0.05°,几乎没有偏差。CbSS 的一个潜在应用是在天线阵列形式因素小的情况下需要准确 DOA 估计的场景,例如智能交通系统行业和无线通信。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a079/9025853/6e7d59451be4/sensors-22-03096-g001a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验