Suppr超能文献

用于 CO2 的水相直接空气捕获的烷氧基和苯氧基的反向分子设计。

Inverse molecular design of alkoxides and phenoxides for aqueous direct air capture of CO.

机构信息

Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095.

Department of Chemistry, University of California, Irvine, Natural Sciences II, Irvine, CA 92697.

出版信息

Proc Natl Acad Sci U S A. 2022 Jun 21;119(25):e2123496119. doi: 10.1073/pnas.2123496119. Epub 2022 Jun 16.

Abstract

Aqueous direct air capture (DAC) is a key technology toward a carbon negative infrastructure. Developing sorbent molecules with water and oxygen tolerance and high CO binding capacity is therefore highly desired. We analyze the CO absorption chemistries on amines, alkoxides, and phenoxides with density functional theory calculations, and perform inverse molecular design of the optimal sorbent. The alkoxides and phenoxides are found to be more suitable for aqueous DAC than amines thanks to their water tolerance (lower p prevents protonation by water) and capture stoichiometry of 1:1 (2:1 for amines). All three molecular systems are found to generally obey the same linear scaling relationship (LSR) between [Formula: see text] and [Formula: see text], since both CO and proton are bonded to the nucleophilic (alkoxy or amine) binding site through a majorly [Formula: see text] bonding orbital. Several high-performance alkoxides are proposed from the computational screening. Phenoxides have comparatively poorer correlation between [Formula: see text] and [Formula: see text], showing promise for optimization. We apply a genetic algorithm to search the chemical space of substituted phenoxides for the optimal sorbent. Several promising off-LSR candidates are discovered. The most promising one features bulky ortho substituents forcing the CO adduct into a perpendicular configuration with respect to the aromatic ring. In this configuration, the phenoxide binds CO and a proton using different molecular orbitals, thereby decoupling the [Formula: see text] and [Formula: see text]. The [Formula: see text] trend and off-LSR behaviors are then confirmed by experiments, validating the inverse molecular design framework. This work not only extensively studies the chemistry of the aqueous DAC, but also presents a transferrable computational workflow for understanding and optimization of other functional molecules.

摘要

水相直接空气捕集(DAC)是实现碳负基础设施的关键技术。因此,非常需要开发具有耐水和耐氧性以及高 CO 结合能力的吸附剂分子。我们通过密度泛函理论计算分析了胺、烷氧基和酚氧基的 CO 吸收化学,并进行了最佳吸附剂的反向分子设计。由于烷氧基和酚氧基的耐水性(p 较低,可防止质子化)和 1:1 的捕获化学计量(胺为 2:1),它们比胺更适合水相 DAC。所有三种分子体系都被发现通常遵循 CO 和质子都通过主要的[Formula: see text]键合轨道与亲核(烷氧基或胺)结合位点结合的[Formula: see text]和[Formula: see text]之间相同的线性标度关系(LSR)。从计算筛选中提出了几种高性能的烷氧基。酚氧基的[Formula: see text]和[Formula: see text]之间的相关性较差,显示出优化的潜力。我们应用遗传算法搜索取代酚氧基的化学空间以寻找最佳吸附剂。发现了几个很有前途的偏离 LSR 的候选物。最有前途的候选物具有大的邻位取代基,迫使 CO 加合物与芳香环成垂直构型。在这种构型中,酚氧基使用不同的分子轨道结合 CO 和质子,从而使[Formula: see text]和[Formula: see text]解耦。通过实验证实了[Formula: see text]趋势和偏离 LSR 的行为,验证了反向分子设计框架。这项工作不仅广泛研究了水相 DAC 的化学,而且还提出了一种可转移的计算工作流程,用于理解和优化其他功能分子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c296/9231474/62b4b3b3e605/pnas.2123496119fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验