Swirog Marta, Mikolajczyk Alicja, Jagiello Karolina, Jänes Jaak, Tämm Kaido, Puzyn Tomasz
Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdańsk, Poland; QSAR Lab Sp. Z o. o., Trzy Lipy 3, 80-172, Poland.
Sci Total Environ. 2022 Sep 20;840:156572. doi: 10.1016/j.scitotenv.2022.156572. Epub 2022 Jun 14.
Natural and engineered nanoparticles (NPs) entering the environment are influenced by many physicochemical processes and show various behavior in different systems (e.g., natural waters showing different characteristics). Determining the physicochemical characteristics and predicting the behavior of nanoparticles ending up in the natural aquatic environment are key aspects of their risk assessment. Here, we show that the quantitative structure-property relationship modeling method used in nanoinformatics (nano-QSPR) can be successfully applied to predict environmental fate-relevant properties (electrophoretic mobility) of TiO, ZnO, and CeO nanoparticles. However, in contrast to the previous works, we postulate to use, in parallel: (i) the nanoparticles' structure descriptors (S-descriptors) and (ii) the environment descriptors (E-descriptors) as the input variables. Thus, the method should be abbreviated more precisely as nano-QSEPR ("E" stands for the "environment"). As a proof-of-the-concept, we have developed a group of models (including MLR, GA-PLS, PCR, and Meta-Consensus models) with high predictive capabilities (Q = 0.931 for the GA-PLS model), where the S-descriptors are represented by the core-shell model descriptor and the E-descriptors - by different ambient water features (including ions concentration and the ionic strength). The newly proposed nano-QSEPR modeling scheme can be efficiently used to design safe and sustainable nanomaterials.
进入环境中的天然和工程纳米颗粒(NPs)会受到许多物理化学过程的影响,并在不同系统中表现出各种行为(例如,具有不同特征的天然水体)。确定纳米颗粒的物理化学特性并预测其在天然水生环境中的行为是其风险评估的关键方面。在此,我们表明纳米信息学中使用的定量结构-性质关系建模方法(nano-QSPR)可以成功应用于预测TiO、ZnO和CeO纳米颗粒与环境归宿相关的性质(电泳迁移率)。然而,与先前的研究不同,我们假设并行使用:(i)纳米颗粒的结构描述符(S-描述符)和(ii)环境描述符(E-描述符)作为输入变量。因此,该方法应更精确地缩写为nano-QSEPR(“E”代表“环境”)。作为概念验证,我们开发了一组具有高预测能力的模型(包括MLR、GA-PLS、PCR和Meta-共识模型)(GA-PLS模型的Q = 0.931),其中S-描述符由核壳模型描述符表示,E-描述符由不同的环境水特征(包括离子浓度和离子强度)表示。新提出的nano-QSEPR建模方案可有效地用于设计安全且可持续的纳米材料。