Suppr超能文献

CompSafeNano项目:用于设计安全纳米材料的纳米信息学方法。

CompSafeNano project: NanoInformatics approaches for safe-by-design nanomaterials.

作者信息

Zouraris Dimitrios, Mavrogiorgis Angelos, Tsoumanis Andreas, Saarimäki Laura Aliisa, Del Giudice Giusy, Federico Antonio, Serra Angela, Greco Dario, Rouse Ian, Subbotina Julia, Lobaskin Vladimir, Jagiello Karolina, Ciura Krzesimir, Judzinska Beata, Mikolajczyk Alicja, Sosnowska Anita, Puzyn Tomasz, Gulumian Mary, Wepener Victor, Martinez Diego S T, Petry Romana, El Yamani Naouale, Rundén-Pran Elise, Murugadoss Sivakumar, Shaposhnikov Sergey, Minadakis Vasileios, Tsiros Periklis, Sarimveis Harry, Longhin Eleonora Marta, SenGupta Tanima, Olsen Ann-Karin Hardie, Skakalova Viera, Hutar Peter, Dusinska Maria, Papadiamantis Anastasios G, Gheorghe L Cristiana, Reilly Katie, Brun Emilie, Ullah Sami, Cambier Sebastien, Serchi Tommaso, Tämm Kaido, Lorusso Candida, Dondero Francesco, Melagrakis Evangelos, Fraz Muhammad Moazam, Melagraki Georgia, Lynch Iseult, Afantitis Antreas

机构信息

NovaMechanics Ltd, Nicosia 1070, Cyprus.

Entelos Institute, Larnaca 6059, Cyprus.

出版信息

Comput Struct Biotechnol J. 2024 Dec 25;29:13-28. doi: 10.1016/j.csbj.2024.12.024. eCollection 2025.

Abstract

The CompSafeNano project, a Research and Innovation Staff Exchange (RISE) project funded under the European Union's Horizon 2020 program, aims to advance the safety and innovation potential of nanomaterials (NMs) by integrating cutting-edge nanoinformatics, computational modelling, and predictive toxicology to enable design of safer NMs at the earliest stage of materials development. The project leverages Safe-by-Design (SbD) principles to ensure the development of inherently safer NMs, enhancing both regulatory compliance and international collaboration. By building on established nanoinformatics frameworks, such as those developed in the H2020-funded projects NanoSolveIT and NanoCommons, CompSafeNano addresses critical challenges in nanosafety through development and integration of innovative methodologies, including advanced models, approaches including machine learning (ML) and artificial intelligence (AI)-driven predictive models and 1st-principles computational modelling of NMs properties, interactions and effects on living systems. Significant progress has been made in generating atomistic and quantum-mechanical descriptors for various NMs, evaluating their interactions with biological systems (from small molecules or metabolites, to proteins, cells, organisms, animals, humans and ecosystems), and in developing predictive models for NMs risk assessment. The CompSafeNano project has also focused on implementing and further standardising data reporting templates and enhancing data management practices, ensuring adherence to the FAIR (Findable, Accessible, Interoperable, Reusable) data principles. Despite challenges, such as limited regulatory acceptance of New Approach Methodologies (NAMs) currently, which has implications for predictive nanosafety assessment, CompSafeNano has successfully developed tools and models that are integral to the safety evaluation of NMs, and that enable the extensive datasets on NMs safety to be utilised for the re-design of NMs that are inherently safer, including through prediction of the acquired biomolecule coronas which provide the biological or environmental identities to NMs, promoting their sustainable use in diverse applications. Future efforts will concentrate on further refining these models, expanding the NanoPharos Database, and working with regulatory stakeholders thereby fostering the widespread adoption of SbD practices across the nanotechnology sector. CompSafeNano's integrative approach, multidisciplinary collaboration and extensive stakeholder engagement, position the project as a critical driver of innovation in NMs SbD methodologies and in the development and implementation of computational nanosafety.

摘要

“CompSafeNano项目”是一个由欧盟“地平线2020”计划资助的研究与创新人员交流(RISE)项目,旨在通过整合前沿的纳米信息学、计算建模和预测毒理学,在材料开发的最早阶段实现更安全纳米材料(NMs)的设计,从而提升纳米材料的安全性和创新潜力。该项目利用“设计即安全”(SbD)原则来确保开发本质上更安全的纳米材料,加强法规遵从性并促进国际合作。通过基于已建立的纳米信息学框架,如在“地平线2020”资助项目“NanoSolveIT”和“NanoCommons”中开发的框架,CompSafeNano通过开发和整合创新方法来应对纳米安全方面的关键挑战,这些方法包括先进模型、机器学习(ML)和人工智能(AI)驱动的预测模型等方法,以及对纳米材料性质、相互作用及其对生命系统影响的第一性原理计算建模。在为各种纳米材料生成原子和量子力学描述符、评估它们与生物系统(从小分子或代谢物到蛋白质、细胞、生物体、动物、人类和生态系统)的相互作用以及开发纳米材料风险评估预测模型方面已经取得了重大进展。CompSafeNano项目还专注于实施并进一步规范数据报告模板,加强数据管理实践,确保遵循FAIR(可查找、可访问、可互操作、可重用)数据原则。尽管存在挑战,例如目前新方法学(NAMs)在法规方面的接受度有限,这对预测性纳米安全评估有影响,但CompSafeNano已成功开发出对纳米材料安全评估不可或缺的工具和模型,这些工具和模型能够利用大量的纳米材料安全数据集对本质上更安全的纳米材料进行重新设计,包括通过预测获得的生物分子冠层,这些冠层赋予纳米材料生物或环境特征,促进其在各种应用中的可持续使用。未来的工作将集中在进一步完善这些模型、扩展纳米灯塔数据库,并与监管利益相关者合作,从而促进“设计即安全”实践在整个纳米技术领域的广泛采用。CompSafeNano的综合方法、多学科合作以及广泛的利益相关者参与,使其成为纳米材料“设计即安全”方法以及计算纳米安全开发与实施方面创新的关键驱动力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48c2/11770392/e7f4ea1e6661/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验