Pistore Valentino, Pogna Eva Arianna Aurelia, Viti Leonardo, Li Lianhe, Davies A Giles, Linfield Edmund H, Vitiello Miriam Serena
NEST, CNR-Istituto Nanoscienze and Scuola Normale Superiore, Pisa, 5612, Italy.
School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, UK.
Adv Sci (Weinh). 2022 Oct;9(28):e2200410. doi: 10.1002/advs.202200410. Epub 2022 Jun 16.
Chip-scale, electrically-pumped terahertz (THz) frequency-combs (FCs) rely on nonlinear four-wave-mixing processes, and have a nontrivial phase relationship between the evenly spaced set of emitted modes. Simultaneous monitoring and manipulation of the intermode phase coherence, without any external seeding or active modulation, is a very demanding task for which there has hitherto been no technological solution. Here, a self-mixing intermode-beatnote spectroscopy system is demonstrated, based on THz quantum cascade laser FCs, in which light is back-scattered from the tip of a scanning near-field optical-microscope (SNOM) and the intracavity reinjection monitored. This enables to exploit the sensitivity of FC phase-coherence to optical feedback and, for the first time, manipulate the amplitude, linewidth and frequency of the intermode THz FC beatnote using the feedback itself. Stable phase-locked regimes are used to construct a FC-based hyperspectral, THz s-SNOM nanoscope. This nanoscope provides 160 nm spatial resolution, coherent detection of multiple phase-locked modes, and mapping of the THz optical response of nanoscale materials up to 3.5 THz, with noise-equivalent-power (NEP) ≈400 pW √Hz . This technique can be applied to the entire infrared range, opening up a new approach to hyper-spectral near-field imaging with wide-scale applications in the study of plasmonics and quantum science, inter alia.
芯片级电泵浦太赫兹(THz)频率梳(FCs)依赖于非线性四波混频过程,并且在均匀间隔的发射模式集之间具有复杂的相位关系。在没有任何外部种子注入或有源调制的情况下,同时监测和操纵模式间的相位相干性是一项极具挑战性的任务,迄今为止尚无技术解决方案。在此,展示了一种基于太赫兹量子级联激光频率梳的自混合模式间拍频光谱系统,其中光从扫描近场光学显微镜(SNOM)的尖端背向散射,并监测腔内再注入。这使得能够利用频率梳相位相干对光反馈的敏感性,并首次利用反馈本身来操纵模式间太赫兹频率梳拍频的幅度、线宽和频率。利用稳定的锁相状态构建了基于频率梳的高光谱太赫兹s-SNOM纳米显微镜。该纳米显微镜提供160 nm的空间分辨率、多个锁相模式的相干检测,以及高达3.5 THz的纳米级材料太赫兹光学响应的映射,噪声等效功率(NEP)≈400 pW √Hz 。该技术可应用于整个红外范围,为高光谱近场成像开辟了一种新方法,在等离子体学和量子科学等研究中具有广泛应用。