School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia.
Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia.
J Am Chem Soc. 2022 Jun 29;144(25):11094-11098. doi: 10.1021/jacs.2c04911. Epub 2022 Jun 17.
Creating high surface area nanocatalysts that contain stacking faults is a promising strategy to improve catalytic activity. Stacking faults can tune the reactivity of the active sites, leading to improved catalytic performance. The formation of branched metal nanoparticles with control of the stacking fault density is synthetically challenging. In this work, we demonstrate that varying the branch width by altering the size of the seed that the branch grows off is an effective method to precisely tune the stacking fault density in branched Ni nanoparticles. A high density of stacking faults across the Ni branches was found to lower the energy barrier for Ni/Ni oxidation and result in enhanced activity for electrocatalytic oxidation of 5-hydroxylmethylfurfural. These results show the ability to synthetically control the stacking fault density in branched nanoparticles as a basis for enhanced catalytic activity.
制备具有层错的高表面积纳米催化剂是提高催化活性的一种很有前途的策略。层错可以调节活性位的反应性,从而提高催化性能。具有控制层错密度的支化金属纳米粒子的形成在合成上具有挑战性。在这项工作中,我们证明了通过改变支化生长的种子的大小来改变支化宽度是一种精确调节支化 Ni 纳米粒子层错密度的有效方法。发现 Ni 支化上的高密度层错降低了 Ni/Ni 氧化的能垒,从而增强了 5-羟甲基糠醛电催化氧化的活性。这些结果表明,我们有能力在支化纳米粒子中合成控制层错密度,从而提高催化活性。