Suppr超能文献

Bagging,一种用于稳健、稳定预测并进行时空不确定性量化的优化动态模式分解方法。

Bagging, optimized dynamic mode decomposition for robust, stable forecasting with spatial and temporal uncertainty quantification.

作者信息

Sashidhar Diya, Kutz J Nathan

机构信息

Department of Applied Mathematics, University of Washington, Seattle, WA 98195-3925, USA.

出版信息

Philos Trans A Math Phys Eng Sci. 2022 Aug 8;380(2229):20210199. doi: 10.1098/rsta.2021.0199. Epub 2022 Jun 20.

Abstract

Dynamic mode decomposition (DMD) provides a regression framework for adaptively learning a best-fit linear dynamics model over snapshots of temporal, or spatio-temporal, data. A variety of regression techniques have been developed for producing the linear model approximation whose solutions are exponentials in time. For spatio-temporal data, DMD provides low-rank and interpretable models in the form of dominant modal structures along with their exponential/oscillatory behaviour in time. The majority of DMD algorithms, however, are prone to bias errors from noisy measurements of the dynamics, leading to poor model fits and unstable forecasting capabilities. The optimized DMD algorithm minimizes the model bias with a variable projection optimization, thus leading to stabilized forecasting capabilities. Here, the optimized DMD algorithm is improved by using statistical bagging methods whereby a single set of snapshots is used to produce an of optimized DMD models. The outputs of these models are averaged to produce a bagging, optimized dynamic mode decomposition (BOP-DMD). BOP-DMD improves performance by stabilizing and cross-validating the DMD model by ensembling; it also robustifies the model and provides both spatial and temporal uncertainty quantification (UQ). Thus, unlike currently available DMD algorithms, BOP-DMD provides a stable and robust model for , or Bayesian, forecasting with comprehensive UQ metrics. This article is part of the theme issue 'Data-driven prediction in dynamical systems'.

摘要

动态模态分解(DMD)提供了一个回归框架,用于在时间或时空数据的快照上自适应地学习最佳拟合线性动力学模型。已经开发了多种回归技术来生成线性模型近似,其解在时间上呈指数形式。对于时空数据,DMD以主导模态结构的形式提供低秩且可解释的模型,以及它们在时间上的指数/振荡行为。然而,大多数DMD算法容易受到动力学噪声测量的偏差误差影响,导致模型拟合不佳和预测能力不稳定。优化的DMD算法通过可变投影优化最小化模型偏差,从而提高预测能力的稳定性。在此,通过使用统计装袋方法改进优化的DMD算法,即使用单组快照生成一组优化的DMD模型。这些模型的输出进行平均以产生装袋优化动态模态分解(BOP-DMD)。BOP-DMD通过集成使DMD模型稳定化和交叉验证来提高性能;它还增强了模型的鲁棒性,并提供空间和时间不确定性量化(UQ)。因此,与目前可用的DMD算法不同,BOP-DMD为具有综合UQ度量的频率或贝叶斯预测提供了一个稳定且鲁棒的模型。本文是主题为“动力系统中的数据驱动预测”的一部分。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验