Suppr超能文献

用于轻度认知障碍和阿尔茨海默病分类的分层特征耦合表示

The Coupled Representation of Hierarchical Features for Mild Cognitive Impairment and Alzheimer's Disease Classification.

作者信息

Liu Ke, Li Qing, Yao Li, Guo Xiaojuan

机构信息

School of Artificial Intelligence, Beijing Normal University, Beijing, China.

Engineering Research Center of Intelligent Technology and Educational Application, Beijing Normal University, Beijing, China.

出版信息

Front Neurosci. 2022 Jun 3;16:902528. doi: 10.3389/fnins.2022.902528. eCollection 2022.

Abstract

Structural magnetic resonance imaging (MRI) features have played an increasingly crucial role in discriminating patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI) from normal controls (NC). However, the large number of structural MRI studies only extracted low-level neuroimaging features or simply concatenated multitudinous features while ignoring the interregional covariate information. The appropriate representation and integration of multilevel features will be preferable for the precise discrimination in the progression of AD. In this study, we proposed a novel inter-coupled feature representation method and built an integration model considering the two-level (the regions of interest (ROI) level and the network level) coupled features based on structural MRI data. For the intra-coupled interactions about the network-level features, we performed the ROI-level (intra- and inter-) coupled interaction within each network by feature expansion and coupling learning. For the inter-coupled interaction of the network-level features, we measured the coupled relationships among different networks Canonical correlation analysis. We evaluated the classification performance using coupled feature representations on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Results showed that the coupled integration model with hierarchical features achieved the optimal classification performance with an accuracy of 90.44% for AD and NC groups, with an accuracy of 87.72% for the MCI converter (MCI-c) and MCI non-converter (MCI-nc) groups. These findings suggested that our two-level coupled interaction representation of hierarchical features has been the effective means for the precise discrimination of MCI-c from MCI-nc groups and, therefore, helpful in the characterization of different AD courses.

摘要

结构磁共振成像(MRI)特征在区分阿尔茨海默病(AD)患者、轻度认知障碍(MCI)患者与正常对照(NC)方面发挥着越来越关键的作用。然而,大量的结构MRI研究仅提取了低级神经影像特征,或只是简单地拼接众多特征,而忽略了区域间的协变量信息。对于AD进展的精确区分,多级特征的适当表示和整合将更可取。在本研究中,我们提出了一种新颖的相互耦合特征表示方法,并基于结构MRI数据构建了一个考虑两级(感兴趣区域(ROI)级和网络级)耦合特征的整合模型。对于网络级特征的内部耦合交互,我们通过特征扩展和耦合学习在每个网络内执行ROI级(内部和相互)耦合交互。对于网络级特征的相互耦合交互,我们使用典型相关分析测量不同网络之间的耦合关系。我们在阿尔茨海默病神经影像倡议(ADNI)数据库上使用耦合特征表示评估分类性能。结果表明,具有分层特征的耦合整合模型实现了最佳分类性能,AD组和NC组的准确率为90.44%,MCI转化者(MCI-c)和MCI非转化者(MCI-nc)组的准确率为87.72%。这些发现表明,我们的分层特征两级耦合交互表示是精确区分MCI-c和MCI-nc组的有效手段,因此有助于表征不同的AD病程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7748/9205193/7fae36783a80/fnins-16-902528-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验