Suppr超能文献

载脂蛋白E4对轻度认知障碍和阿尔茨海默病自动诊断分类器的影响。

ApoE4 effects on automated diagnostic classifiers for mild cognitive impairment and Alzheimer's disease.

作者信息

Apostolova Liana G, Hwang Kristy S, Kohannim Omid, Avila David, Elashoff David, Jack Clifford R, Shaw Leslie, Trojanowski John Q, Weiner Michael W, Thompson Paul M

机构信息

Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.

Imaging genetics Center, Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, CA, USA.

出版信息

Neuroimage Clin. 2014 Jan 4;4:461-72. doi: 10.1016/j.nicl.2013.12.012. eCollection 2014.

Abstract

Biomarkers are the only feasible way to detect and monitor presymptomatic Alzheimer's disease (AD). No single biomarker can predict future cognitive decline with an acceptable level of accuracy. In addition to designing powerful multimodal diagnostic platforms, a careful investigation of the major sources of disease heterogeneity and their influence on biomarker changes is needed. Here we investigated the accuracy of a novel multimodal biomarker classifier for differentiating cognitively normal (NC), mild cognitive impairment (MCI) and AD subjects with and without stratification by ApoE4 genotype. 111 NC, 182 MCI and 95 AD ADNI participants provided both structural MRI and CSF data at baseline. We used an automated machine-learning classifier to test the ability of hippocampal volume and CSF Aβ, t-tau and p-tau levels, both separately and in combination, to differentiate NC, MCI and AD subjects, and predict conversion. We hypothesized that the combined hippocampal/CSF biomarker classifier model would achieve the highest accuracy in differentiating between the three diagnostic groups and that ApoE4 genotype will affect both diagnostic accuracy and biomarker selection. The combined hippocampal/CSF classifier performed better than hippocampus-only classifier in differentiating NC from MCI and NC from AD. It also outperformed the CSF-only classifier in differentiating NC vs. AD. Our amyloid marker played a role in discriminating NC from MCI or AD but not for MCI vs. AD. Neurodegenerative markers contributed to accurate discrimination of AD from NC and MCI but not NC from MCI. Classifiers predicting MCI conversion performed well only after ApoE4 stratification. Hippocampal volume and sex achieved AUC = 0.68 for predicting conversion in the ApoE4-positive MCI, while CSF p-tau, education and sex achieved AUC = 0.89 for predicting conversion in ApoE4-negative MCI. These observations support the proposed biomarker trajectory in AD, which postulates that amyloid markers become abnormal early in the disease course while markers of neurodegeneration become abnormal later in the disease course and suggests that ApoE4 could be at least partially responsible for some of the observed disease heterogeneity.

摘要

生物标志物是检测和监测症状前阿尔茨海默病(AD)的唯一可行方法。没有单一生物标志物能够以可接受的准确度预测未来的认知衰退。除了设计强大的多模态诊断平台外,还需要仔细研究疾病异质性的主要来源及其对生物标志物变化的影响。在此,我们研究了一种新型多模态生物标志物分类器在区分认知正常(NC)、轻度认知障碍(MCI)以及有无ApoE4基因型分层的AD受试者方面的准确性。111名NC、182名MCI和95名AD的ADNI参与者在基线时提供了结构MRI和脑脊液数据。我们使用自动化机器学习分类器来测试海马体积和脑脊液Aβ、总tau蛋白(t-tau)和磷酸化tau蛋白(p-tau)水平单独及联合起来区分NC、MCI和AD受试者以及预测转化的能力。我们假设联合海马体/脑脊液生物标志物分类器模型在区分这三个诊断组时将达到最高准确度,并且ApoE4基因型将影响诊断准确度和生物标志物选择。联合海马体/脑脊液分类器在区分NC与MCI以及NC与AD方面比仅使用海马体的分类器表现更好。在区分NC与AD方面,它也优于仅使用脑脊液的分类器。我们的淀粉样蛋白标志物在区分NC与MCI或AD时发挥了作用,但在区分MCI与AD时未起作用。神经退行性变标志物有助于准确区分AD与NC和MCI,但在区分NC与MCI时未起作用。仅在ApoE4分层后,预测MCI转化的分类器表现良好。对于预测ApoE4阳性MCI的转化,海马体积和性别达到的曲线下面积(AUC)为0.68,而对于预测ApoE4阴性MCI的转化,脑脊液p-tau、受教育程度和性别达到的AUC为0.89。这些观察结果支持了AD中提出的生物标志物轨迹,该轨迹假定淀粉样蛋白标志物在疾病进程早期变得异常,而神经退行性变标志物在疾病进程后期变得异常,并表明ApoE4可能至少部分导致了一些观察到的疾病异质性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c067/3952354/8f618c37fc33/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验